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Lucas, Mohamed Maizia, Morgan Rogers, Paul Séjourné, Pierre-Yves Coursolles, Seng Beng Goh, Thomas
Rubiano, Ulysse Léchine, Valentin Maestracci, William Troiani, Yasmine Laghjichi.

Another group of people that have shaped my understanding of theoretical computer science, its numerous
subdomains with their specific questions and techniques, their differences in how they function, how they
differ in their habits of publication, their criteria. These people are the members of the section 06 of CoNRS,
which I joined in January 2021, continuing for the next mandate and acting as scientific secretary from
September 2021; in (first name) alphabetical order: Alain Tchana, Anastasia Paparrizou, Anca Muscholl,
Antoine Genitrini, Arnaud Legrand , Christophe Rey, Clarisse Dhaenens, Damian Markham, Dominique
Lavenier, Gilles Villard, Hélène Waeselynck, Hubert Comon-Lundh, Igor Walukiewicz, Jérémie Bourdon,
Johanne Cohen , Katia Jaffrès-Runser, Laurence Duchien, Leo Liberti, Maria Potop-Butucaru, Michael Poss,
Nathalie Appel, Nathalie Gilles, Nicolas Bousquet, Pablo Arrighi, Patricia Georgeon, Philippe Owezarski,
Pierre Aboulker, Pierre Clairambault, Pierre Senellart, Pierre Sens, Romain Rouvoy, Sandrine Blazy, Simon
Perdrix, Valérie Berthé, Ye-Qiong Song, Yolande Sallent, Yves Grandvalet.

In a similar way, the members of the interdisciplinary commission 53 of CoNRS have expanded my
understanding of science beyond informatics. While sometimes challenging, working as part of such an
interdisciplinary committee was (and still is) extremely enriching. I therefore thank in (first name) alphabetical



order: Baptiste Mélès, Cedric Paternotte, Charlotte Bigg, Clément Bosquet, Emanuel Bertrand, Fanny Meunier,
Francoise Immel, Frédéric Keck, Hervé Pennec, Isabelle Krzywkowski, Jean-Noël Jouzel, Lorenzo Barrault-
Stella, Lucie Laplane, Natasha Collomb, Nathalie Tanchoux, Pablo Jensen, Patrice Abry, Patrick Blanco, Perig
Pitrou, Pierre Blavier, Rodolphe Defiolle, Sara Angeli-Aguiton.

Beyond those, I would like to thank all researchers I have met and interacted with during the (now somewhat
numerous) years since I embarked on my PhD, in the context of collaborations, scientific discussions
(sometimes short, but always impactful), organisation tasks, administrative tasks, etc. Obviously, this includes
everyone from the different communities I have enjoyed contributing to and I cannot hope to provide an
exhaustive list, especially given my tendency to disperse. I will nevertheless try to name most of them
(and if you are not part of the list and should be, I will happily add you): Adeline Nazarenko, Adrien
Champougny, Adrien Guatto, Adrienne Lancelot, Afonso Ferreira, Alberto Naibo, Alejandro Díaz-Caro,
Alex Bredariol Grilo, Alexander Shen, Alexandre Dupont-Bouillard, Alexis Saurin, Aloys Dufour, Amaury
Pouly, Anastasia Volkova, André Seznec, Andreas Sportiello, Andrei Romashchenko, Anne Siegel, Anupam
Das, Assia Mahboubi, Aude Gretzka, Aurore Alcolei, Axel Kerinec, Baptiste Chanus, Beniamino Accattoli,
Benoit Valiron, Carola Doerr, Caroline Collange, Céline Rouveirol, Chantal Keller, Christian Jutten, Christine
Tasson, Christophe Fouqueré, Christophe Raffalli, Christophe Tollu, Claudia Faggian, Clément Aubert, Clovis
Eberhart, Colin Riba, Cynthia Kop, Damiano Mazza, Damien Pous, Daniel Hirschkoff, Daniel Murfet, Davide
Barbarossa, Delia Kesner, Denis Merigoux, Dimitri Ara, Edgar Lejeune, Edwige Cyffers, Emmanuel Beffara,
Emmanuel Hainry, Emmanuel Haucourt, Erven Rohou, Etienne André, Etienne Miquey, Etienne Moutot,
Federico Olimpieri, Flavien Breuvart, Florent Koechlin, Florian Jaton, Frederique Bassino, Gabriel Scherer,
Gilles Trédan, Giulio Manzonetto, Giuseppe Primiero, Guilhem Jaber, Guillaume Bonfante, Guillaume
Geoffroy, Guillaume Malod, Guillaume Melquiond, Guillaume Munch-Maccagnoni, Guillaume Theyssier,
Henri Stephanou, Hong-Linh Le, Hugo Férée, Hugo Herbelin, Hugo Paquet, Isabelle Puaut, Jaco van de
Pol, James Avery, James Haydon, Jean-Baptiste Joinet, Jean-Yves Marion, Jean-Yves Moyen, Jérôme Lang,
Joanna Ochremiak, John Terilla, Jonas Frey, Joseph Ben Geloun, Juan-Luis (Gianni) Gastaldi, Julien Cervelle,
K. V. Subrahmanyam, Karine Chemla, Kasper Hornbæk, Kazushige Terui, Kostia Chardonnet, Krzysztof
Worytkiewicz, Ksenia Ermoshina, Ksenia Tatarchenko, Laetitia Laversa, Lars Kristiansen, Laura Fontanella,
Lionel Pournin, Lionel Vaux Auclair, Lorenzo Tortora de Falco, Luc Pellissier, Luidnel Maignan, Luiz-Carlos
Pereira, Łukasz Czajka, Marc de Visme, Marco Panza, Marianna Antonutti Marfori, Marie Alauzen, Marie-
Christine Rousset, Marylou Le Roy, Massimo Airoldi, Matteo Acclavio, Matthieu Lacroix, Mattia Petrolo,
Melissa Antonelli, Meven Lennon-Bertrand, Michael Walter, Michaela Mayero, Michele Pagani, Mikaël Monet,
Mitsuhiro Okada, Mohand-Saïd Hacid, Myriam Quatrini, Natasha Portier, Nathalie Pernelle, Neea Rusch,
Neeraj Kayal, Neil D. Jones, Neil (Julien) Ross, Nguyen Viet Hung, Nicolas Tabareau, Noam Zeilberger, Nutan
Limaye, Olivier Bodini, Olivier Bournez, Olivier Laurent, Olivier Serre, Paolo Pistone, Pascal Vannier, Pascal
Weil, Patrick Baillot, Paul-André Melliès, Paula Quinon, Paulin de Naurois, Perceval Pillon, Pernille Bjørn,
Peter Selinger, Philippos Papagiannopoulos, Pierre Boudes, Pierre Depaz, Pierre Fouilhoux, Pierre Guillon,
Pierre Hyvernat, Pierre Ohlmann, Pierre Valarcher, Pierre Wagner, Pierre-Evariste Dagand, Pierre-Louis
Curien, Pierre-Marie Pédrot, Raphaëlle Crubillé, Rayya Roumanos, Roberto Maieli, Roberto Wolfler Calvo,
Rodolphe Lepigre, Samantha Jarvis, Samuel Mimram, Sarah Lawsky, Sébastien Tavenas, Shin-Ya Katsumata,
Siddarth Bhaskar, Simon Mirwasser, Simone Martini, Sonia Marin, Sophie Huiberts, Sophie Toulouse,
Srikanth Srinivasan, Stefano Guerrini, Sylvain Perifel, Théo Winterhalter, Thierry Joly, Thierry Monteil,
Thomas Ehrhard, Thomas Rubiano, Tiphaine Viard, Titouan Carette, Valentin Blot, Valeria Vignudelli, Virgile
Mogbil, Visu Makam, Walter Dean, Yuri Gurevich, Yves Lafont, Zeinab Galal.

Obviously, the most important support of all is that of my family. I thank my two children for joyfully
precluding me from working outside of working school hours. Their presence made me take most (if not
all) my week-ends off in such a way that it did not even count as resting time. They entered my life with a
ferocious energy deflecting me from work. While I cannot thank them for the contents of this documents, I
owe them much more: all these beloved moments outside of work which belittle whatever I wrote in those
pages.

Finally, I wish to thank Marie‗. While she has filled my non-working time with priceless memories, she also
helped me in achieving the results here in so many ways that I cannot start recounting them. As such, she
supported fully both this work and everything else that was not this work. I would not have been able to finish

‗ I have waited long enough, right?



start writing this document without her support. But more importantly: I would not have the opportunity to
say that this manuscrit, which I am proud of†, may in fact be the part of my life that I am the least proud of.

† At least while I am finishing to write it; I will surely find many defaults in it as the time comes.



Contents

Acknowledgments iii

Contents vi

1. Genesis 1

2. A complete timeline 8
2.1. Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2. Implicit Computational complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3. Computability, Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4. Automata and randomness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.5. Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.6. Philosophy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

I. A mathematical theory of computer science 19

3. Abstract models of computation 20
3.1. Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2. Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3. Computational equivalences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.4. Mathematical equivalences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.5. Relating with previous work: conditional abstract models of computation . . . . . . . . . . 43

4. Abstract machines and programs 44
4.1. Abstract machines as graphings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.2. Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.3. Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.4. Program-level equivalences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5. Abstract data structures and complexity 60
5.1. Abstract data structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.2. Data-constrained Equivalences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.3. A bit of history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.4. Configuration complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.5. Transition complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.6. Quantitative equivalences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.7. Universal programs and hierarchy theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6. Abstract specification and algorithms 80
6.1. Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.2. A new proposal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.3. Specified algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.4. Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.5. Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

II. Applications 94

7. Discretisation and static analyses of programs 95
7.1. Flow analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95



7.2. Discretisation of abstract programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
7.3. Dependency analysis and loop quasi-invariants . . . . . . . . . . . . . . . . . . . . . . . . . 104
7.4. Dependency analysis and parallelisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
7.5. Implementing mwp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

8. Unifying algebraic lower bounds 126
8.1. Algebraic models of computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
8.2. Entropy and Cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
8.3. Digression: a bit of algebraic geometry and topology . . . . . . . . . . . . . . . . . . . . . . 140
8.4. Lower Bounds results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

9. The mathematical structure of abstract programs 147
9.1. Induced action on graphings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
9.2. Lifting the action, defining execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
9.3. Trefoil Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
9.4. Zeta cocycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

10. Linear realisability 165
10.1. The general setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
10.2. Multiplicative-Additive linear logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
10.3. Localised models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
10.4. Examples of linear realisability models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

11. Semantic complexity 182
11.1. von Neumann algebras and expressivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
11.2. Graphings and complexity: the set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
11.3. Statement of the results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

III. Two roads that lie ahead 204

12. Invariants for lower bounds 205

13. Architecture-oriented complexity 207

IV. Appendix 209

14. von Neumann algebras 210

Bibliography 217

Alphabetical Index 229



Genesis 1.
In this section, I want to do the exercise of retracing the flow of production
of the material contained in later section. For (good) pedagogical reasons,
the presentation completely messes up the causality relations, hiding
the process behind the research. This section will try to expose this
process, at the same time making clear the fact that what has been written
corresponds to a snapshot of an object in movement. A picture of the
sea and waves, as the one on the title page, can show very clearly some
details, but it will always keep some parts hidden; the same picture
taken a few seconds later could be incomparable. It is the same here:
this document has been written at a very specific moment in time, and
represents a still picture of an ever-moving object. Although it may not
be enough, I try in this section to uncover – or at least sketch – the hidden
movement of the waves underneath made invisible by the format of a
written report.

I am by training (by design) a mathematician. But I have found myself
thinking more and more as a computer scientist over the years. The first
part of the document somehow embraces that change. It takes its origins
in a criticism of the theory of computability: that it was designed by
mathematicians to answer mathematical questions about mathematical
objects. As such, it can be argued that it does not provide a proper
foundational theory for computer science. In particular, it does not define
the fundamental notions studied by the latter: models of computation,
programs, algorithms, etc.

I have found over the years that some of the structures that were un-
derlying a large part of my research could lead to another approach
to computability, one that does not focus on which functions are com-
putable but rather on how those can be computed. All the material in
the corresponding chapters (from chapter 3 to chapter 6) is new. In those,
I present basic notions and examples. But this should be understood as
a first approximation of a general theory to be detailed and developed
further in future work. To mimic a well-known book title in category
theory, this is just a preliminary sketch of a very large animal, but some
underwater, unseen creature, like a giant squid (but a nice and welcoming
one) with far-reaching tentacles disappearing in the dark. I still expect
this sketch to provide a sound and solid basis for future extensions.

The second part of the document contains a selection of the work I have
done since my PhD, presented in light of the first part. While the contents
of the first part have taken shape gradually over the years, with some
preliminary definitions appearing in the most recent published papers,
the underlying point of view has always been present – though in a
vague and intangible way – and has had an impact on my research. The
corresponding chapters correspond to published work presented – most
of the time – synthetically. New material nevertheless appears in these
chapters. In particular:

▶ this document explains the connection between the dynamic point
of view on computability presented in the first part and the de-
pendency analyses originally inspired by Jones and Kristiansen’s
mwp-flows analysis [1]; [1]: Jones et al. (2009), A Flow Calculus of

Mwp-bounds for Complexity Analysis
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▶ the connection between the graphings interpretation of programs
and the operator-theoretic geometry of interaction construction of
Girard is detailed for the first time;

▶ the linear realisability models I have worked on for years are pre-
sented in a more axiomatic way, extracting the essential properties
and providing generic constructions (which specialise to the several
models of linear logic I have been working on in the past).

The last part is about (some of) the roads lying ahead of me, or at least
the ones that I cherish the most at the moment. The first has been a
motivating idea for several years now, while the second is new, and arose
while writing Part 1. The second takes a step further in criticising the ever-
widening gap between the theory of computation and computing itself,
and opens a road (surely dangerous) to try and bridge this gap. Obviously,
those two directions should be complemented with fundamental work
to extend the first part of this document.

Before entering the core part of this document, I present in the following
sections the flow of ideas that have led to the results presented here in a
chronological way. I also take this opportunity to summarise some of the
results that have not made their way in the document.

Background: Curry-Howard

In the background of my work lies the proofs-as-programs (or Curry-
Howard) correspondence. This correspondence states that notions in
computer science (more specifically lambda-calculus or functional pro-
gramming languages) correspond to notions in proof theory (a subfield
of mathematical logic that studies the notion of proof as mathematical
objects). The correspondence’s core can be expressed as below:

Computer Science Logic
Type Formula

Program Proof
Execution Cut elimination

This correspondence has been extended in many ways, and is essential
in the fields of Semantics of Programming Languages and the Theory of
Programming Languages. Among the outcomes of the Curry-Howard
correspondence, we find refinements of logical systems accounting for
specific aspects of computation: linear logic for instance accounts for
the notion of resources, differential linear logic accounts for a notion of
differentiation of programs. These refinements and extensions usually
arise from a careful study of models: the normal functor model [2] for [2]: Girard (1988), Normal functors, power

series and 𝜆-calculuslinear logic [3], Köthe spaces [4] for differential linear logic [5]. Here
[3]: Girard (1987), Linear logic
[4]: Ehrhard (2002), On Köthe Sequence
Spaces and Linear Logic
[5]: Ehrhard et al. (2006), Differential in-
teraction nets

the notion of model is synonymous with denotational models or even
categorical models. The above correspondence may be extended to the
so-called Curry-Howard-Lambek correspondence by adding category
theory in the picture.

Computer Science Logic Category Theory
Type Formula Object

Program Proof Morphism
Execution Cut elimination Identity
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However, as one can see, the category-theoretic perspective (at least
when restricted to 1-categories) trivialises the level of dynamics. In fact,
denotational semantics more generally consists in equating a program
given an argument and the result of its execution. Intuitively, this is
the same as identifying the expression 42 + 74 with 2417. Formally, in
lambda-calculus this corresponds to identifying a 𝜆-term 𝑡 with its
normal form 𝑡′ (w.r.t. 𝛽-reduction). My work has been focussed from the
beginning on a different family of mathematical models of programs in
which execution is not represented as the identity but as a non-trivial
mathematical operation.

𝑡 |[𝑡]|

𝑡′ |[𝑡′]|

𝛽

Denotational

𝑡 |[𝑡]|

𝑡′ |[𝑡′]|

𝛽

Dynamical

This approach is very close to game semantics for programming languages1 1: In fact game semantics originate in the
earlier models of this type.and more recent work defining 2-categorical (or higher) semantics (an

extension of categories in which one has a notion of 2-morphisms between
morphisms) but differs in the employed techniques. While those start
from the notion of type, from which one gets a notion of typed program,
the models I have worked on are usually constructed the other way:
we start from a set of untyped programs, and show that they naturally
possess the structure to define types2. I now use the terminology Linear 2: This point of view on types as de-

scriptors or classifiers, as opposed to the
traditional view of types as constraints
have been explored in a work with Jean-
Baptiste Joinet mentioned below (subsec-
tion 2.6).

Realisability models to describe such models, in order to emphasise their
connection with realisability (both in the standard sense of Kleene and
in the sense of Krivine’s classical realisability).

Linear realisability and von Neumann algebras

My PhD was about the newest (at the time) linear realisability construction
introduced by Jean-Yves Girard [6]. This model was exploiting a previous [6]: Girard (2011), Geometry of Interaction

V: Logic in the Hyperfinite Factor.result [7] that established that the functional equation (Equation 1.1)
[7]: Girard (2006), Geometry of Interaction
IV: the Feedback Equation

corresponding to cut-elimination in linear logic (or 𝛽-reduction in lambda-
calculus) always had a solution when the operators considered were
taken in the unit ball of a von Neumann algebra. This quite technical
result consisted in showing that the concrete solution, called the execution
formula, which works for operators of norm strictly less than 1, could be
extended by continuity without breaking associativity. The ‘geometry in
the hyperfinite factor’ construction then exploited this extended solution
to propose a realisability model whose underlying set of ‘programs’ is
the set of all operators in the unit ball of a von Neumann algebra.

Traditionally, a program in geometry of interaction is represented as an
operator3 acting on a Hilbert space 𝕀 ⊕ 𝕆, which is used to represent 3: Other presentations exists, in partic-

ular based on flows, but this change in
the presentation of objects turns out to
be mostly aesthetic: all models can be
presented in an operator-theoretic set-
ting. This is done for instance in my PhD
thesis [8] (in french).

inputs 𝕀 and outputs 𝕆. Given such a representation 𝑃 of a program and
a representation 𝐼 ∈ 𝕀 of an input, the representation of the computed
output 𝑂 is defined as the solution to a functional equation, named the
feedback equation.

𝑂(𝜉) = 𝜉′⇔ ∃𝜂, 𝜂′ ∈ 𝕀,
{
𝑃(𝜂 ⊕ 𝜉) = 𝜂′ ⊕ 𝜉′

𝐼(𝜂′) = 𝜂
(1.1)
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It was then shown by Girard [7] that if one restricts to operators 𝑃, 𝐼 [7]: Girard (2006), Geometry of Interaction
IV: the Feedback Equationbelonging to the unit ball of a von Neumann algebra 𝔐, this equation

always has a solution4, i.e. there is an operator 𝑂 satisfying this equation, 4: And that this solution is order-
continuous and satisfies an associativity
property [7].

and 𝑂 belongs to the unit ball of 𝔐. This lead to the introduction of
the geometry in the hyperfinite factor, or GoI5, construction [6] in which a

[6]: Girard (2011), Geometry of Interaction
V: Logic in the Hyperfinite Factor.

linear realisability model of (a fragment of) linear logic is constructed
over the unit ball of the hyperfinite factor of type II∞. This was a large
generalisation of previous geometry of interaction models, in which the
underlying set was restricted to a subset of operators in a C*-algebra
generated by a few simple operators. This had two main impacts:

▶ the notion of orthogonality, traditionally based on nilpotency,
needed to be modified; for this, Girard introduced a notion based
on the Fuglede-Kadison determinant [9], a generalisation of the
determinant of matrices to operators in (some) von Neumann
algebras;

▶ the notion of proof-like operators, i.e. those operators that can be the
interpretation of proofs, required to be defined with respect to a
maximal abelian von Neumann subalgebra [10] – called a viewpoint [10]: Seiller (2018), A Correspondence be-

tween Maximal Abelian Sub-Algebras and
Linear Logic Fragments

–, representing a chosen basis for the underlying space.

My work was concerned with both these aspects. Concerning the first,
it lead me to introduce a combinatorial version of linear realisability
constructions motivated by a combinatorial interpretation of the deter-
minant. The corresponding work on Interaction graphs, will be presented
later in this document. My work on the second aspect led me to what
remains to this day my own favourite result showing a connection be-
tween a classification of maximal abelian von Neumann algebras 𝔄 due
to Dixmier [11] and the fragment of linear logic that one can interpret [11]: Dixmier (1954), Sous-anneaux abéliens

maximaux dans les facteurs de type finisoundly with respect to the viewpoint 𝔄. This result is presented in
chapter 11.

A guiding result

This result (Theorem 11.1.27) turned out to be guiding result for my
subsequent work. Indeed, previous and subsequent work showed the
obtained geometry of interaction (goi) model interprets, depending on
the choice of the von Neumann algebra𝔐 and the viewpoint𝔄, either full
linear logic [12], the constrained system Elementary Linear logic (ELL) [12]: Girard (1995), Geometry Of Interaction

III: Accommodating The Additiveswhich characterises elementary time computable functions [8, 10, 13], or
[8]: Seiller (2012), Logique dans le facteur
hyperfini : géometrie de l’interaction et com-
plexité
[10]: Seiller (2018), A Correspondence be-
tween Maximal Abelian Sub-Algebras and
Linear Logic Fragments
[13]: Seiller (2019), Interaction Graphs: Ex-
ponentials

smaller fragment such as multiplicative additive linear logic (MALL).
This naturally leads to the following informal conjecture.

Informal Conjecture 1 There is a correspondence between complexity
classes and pairs (𝔄,𝔑) of a von Neumann algebra 𝔑 and a maximal
abelian von Neumann subalgebra 𝔄 ⊂ 𝔑.

But once this informal conjecture formulated, how could one try to
establish or refute it? The framework is in fact extremely difficult to
exploit further for two reasons. First, the theory of maximal abelian
sub-algebras in von Neumann algebras is an involved subject matter
still containing large numbers of basic but difficult open problems [14]. [14]: Sinclair et al. (2008), Finite von Neu-

mann algebras and MasasSecond, even though some results were obtained, no intuitions would be
gained about how the choice of the couples (𝔄,𝔑) actually restricts the
computational power of the programs represented in the models.
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From operators to graphings

It is while considering this (seemingly) dead-end that I realised that
my other work relating to realisability models of linear logic, Interaction
graphs models, could provide an alternative, more tractable, approach.
Interaction graphs can be understood as a concrete definition of (some)
operators in a specified von Neumann algebra considered with a specific
abelian sub-aglebra.

Indeed, I had shown in earlier work [15, 16] how one can construct [15]: Seiller (2012), Interaction Graphs: Mul-
tiplicatives
[16]: Seiller (2016), Interaction graphs: Ad-
ditives

models of mall where proofs are interpreted as graphs. This construction
relied on a single property, the trefoil property, which relates two simple
notions:

▶ the execution 𝐹 ::𝐺 of two graphs, a graph defined as a set of paths;
▶ the measurement J𝐹, 𝐺K𝑚 , a real number computed from a set of

cycles.

A more general construction was then built upon a generalization of
graphs [17], named graphings [18–20]. [17]: Seiller (2017), Interaction Graphs:

Graphings
[18]: Adams (1990), Trees and amenable
equivalence relations
[19]: Levitt (1995), On the cost of generating
an equivalence relation
[20]: Gaboriau (2000), Coût des relations
d’équivalence et des groupes

Graphings can be understood either as geometric realisations of graphs
on a measure space (𝑋,B, 𝜇), as measurable families of graphs, or as
generalized measured dynamical system. The notion is parametrized by
a monoid describing the model of computation and a map describing
the realisability structure:

▶ a monoid 𝔪 of measurable maps5 from (𝑋,B, 𝜇) to itself; 5: In practice, one requires those maps
to be bimeasurable non-singular transfor-
mations, i.e. a measurable map 𝑓 which
sends measurable sets to measurable sets,
and such that 𝑓 (𝐴) is negligible if and
only if 𝐴 is negligible.

▶ a map 𝑚 : Ω→ R̄⩾0 defining orthogonality – accounting for linear
negation.

An 𝔪-graphing is then defined as a directed graph 𝐹 whose vertices are
measurable subsets of the measurable space (𝑋,B), and whose edges are
realised by elements of 𝔪, i.e. for each edge 𝑒 there exists an element 𝜙𝑒
in 𝔪 such that 𝜙𝑒(𝑠(𝑒)) = 𝑡(𝑒), where 𝑠, 𝑡 denote the source and target
maps6. Based on this notion, and an orthogonality relation defined from 6: In practice, graphings are defined

without target maps, and we deduce 𝑡(𝑒)
from 𝜙𝑒 and 𝑠(𝑒).

the map 𝑚, I obtained a systematic method for constructing realisability
models for linear logic [17]. This is presented in chapter 10.

[17]: Seiller (2017), Interaction Graphs:
GraphingsBut at the core of the construction, one finds a monoid action 𝛼 : 𝔪→

End(𝑋,B, 𝜇)which can be related to the operator-theoretic setting in the
specific case in which 𝔪 is a group of measure-preserving maps. Indeed,
by a standard construction in the theory of von Neumann algebras called
the group measure space construction, a measure-preserving group action
𝛼 : 𝔪 → End(𝑋,B, 𝜇) gives rise to a pair 𝔄 ⊂ 𝔑 of a von Neumann
algebra 𝔑 and a maximal abelian von Neumann subalgebra 𝔄. The
construction works as follows:

▶ one considers the Hilbert space 𝕂 = 𝐿2(𝑋,B, 𝜇) ⊗ 𝐿2(𝔪);
▶ 𝔄 is defined as the algebra 𝐿∞(𝑋,B, 𝜇) of essentially-bounded

complex-valued functions on 𝑋 , represented on 𝕂 by left multipli-
cation on 𝐿∞(𝑋,B, 𝜇);

▶ the algebra 𝔑 is generated by operators on 𝐿2(𝑋,B, 𝜇) ⊗ 𝐿2(𝔪)
induced by the elements of 𝔪.

Intuitively, graphings are therefore7 a description of operators in 𝔑 that 7: When one restricts to the case of group
actions by measure-preserving transfor-
mations; the general case of a monoid
action should thus be considered as a gen-
eralisation of this situation in the case
the measure-space construction is not
applicable.

preserve 𝔄 in some way (it can be shown that operators induced by 𝔑 are
in the normalising groupoid of𝔄). They are therefore concrete realisations
of some operators in 𝔑, leading to the following reformulation of the
informal conjecture.
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Informal Conjecture 2 There is a correspondence between complexity
classes and monoid actions 𝛼 : 𝔪→ End(𝑋,B, 𝜇), where (𝑋,B, 𝜇) is a
measure space.

This informal conjecture have then been the main motivation behind
many results over the years, as I was trying to answer the following
questions:

1. Can we establish this correspondence for specific complexity classes
and monoid actions? The results in that direction are presented in
(chapter 11);

2. Can invariants for the monoid action be used to prove that two
complexity classes are not equal? This lead me to investigate
Mulmuley’s geometric complexity theory programme, as well as
trying to understand numerous lower bounds techniques. This
lead in particular to the results presented in chapter 8, where we
show how topological entropy can be leveraged to obtain known
(and some new) lower bounds results.

3. Can the result about entropy mentioned in item 2 be lifted to the
realisability models to be applied to the classes characterisations
mentioned in item 1? This lead me to investigate the structure of
the linear realisability models, and in particular the orthogonality
relation. This resulted in exposing how the latter is related to zeta
functions for graphs [21] and dynamical systems [22] (chapter 9). [21]: Ihara (1966), On discrete subgroups of

the two by two projective linear group over
𝔭 -adic fields
[22]: Ruelle (1976), Zeta-functions for ex-
panding maps and Anosov flows

This question is also part of the perspectives for future work,
presented in chapter 12.

An ontology of computer science

As part of my work on these questions, I have come to the realisation
that underlying the approach lies a mathematical theory of computers,
programs, and more. In the last two years, I have therefore started
investigating this aspect independently from the questions above. In
particular, I started working with philosophers to understand if this point
of view could lead to a new perspective on questions such as: what is
computation? what is a model of computation? what is a program?

I realised that while computability theory offers a nice theory for talking
about computable functions, it is in the end just about that: which
functions are computable. It does not define what a program is, or what
an algorithm is, and one may ask: can computer science be a science on its
own if it cannot define properly the objects it studies? These interactions
with philosophers were extremely enriching, from the discussions we
had to the papers – tackling those exact questions – we read together.

The first part of this document presents computability from this al-
ternative point of view in details. I propose definitions of models of
computations, machines, programs, data structures and their representa-
tions, complexity, algorithms. These definitions, and the overall principle
of putting forward the dynamics of computer programs, are directly
inspired from the specific approach to semantics presented above. But
they represent a new, separate, line of work. This is a huge project, still a
work in progress. But I believe I have now gathered and arranged enough
stones to ensure proper foundations.

The second part of the document then presents all the results mentioned
previously (and some others) in a coherent and homogenised way. How-
ever, before diving into the technical details, the next chapter provides a
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complete view on all the work I have done, in particular summarising
some results that will not be detailed later in the document.



A complete timeline 2.
This timeline is organised thematically rather than chronologically. I
however tried to provide some information on the connections and
motivations between results when those could be explained easily. The
different themes I have identified are:

1. Semantics (section 2.1)
2. Implicit Computational complexity (section 2.2)
3. Computability and algebraic complexity (section 2.3)
4. Automata and randomness (section 2.4)
5. Verification (section 2.5)
6. Philosophy of logic and philosophy of computer science (section 2.6)

2.1. Semantics

A consequent part of my work since my PhD thesis concerns contributions
in and around these areas. I separate these contributions into two groups:
one that concerns the historical (denotational) model that lead to the
introduction of linear logic, and a second that concerns linear realisability
models. The latter part being discussed further down in the document, I
only quickly summarise the former.

Denotational semantics

Even if my main interest lies in dynamic semantics, and particularly linear
realisability models, I have also worked in the last years on denotational
semantics. Both works originate in the normal functors model of lambda-
calculus from which linear logic originates. This model is based on heavy
category theory. It represents formulas/types as discrete presheaves
categories, i.e. categories of functors from a set 𝐴 (viewed as a category)
to the category of sets. Proofs/programs are then interpreted as functors
between those presheaves categories. The main takeout from the model
is that to interpret lambda-calculus, one can restrict to so-called normal
functors. Those are defined as functors commuting to certain limits (hence
being continuous in a certain sense). One of the major results about those
functors is that they are isomorphic to a categorical equivalent of power
series (hence called analytic by J.-Y. Girard, but this terminology will not
be used here because of the conflict with Joyal’s analytic functors related
to generating series). As such, they are a special case of polynomial functors,
a notion that was introduced much more recently. My contribution related
to normal functors semantics is two-fold, and try to clarify the structure
of this model.

Polynomial functors in groupoids [23] [23]: Finster et al. (2021), A Cartesian Bicat-
egory of Polynomial Functors in Homotopy
Type TheoryThe first work was done in collaboration with Eric Finster, Maxime

Lucas, and Samuel Mimram. Our work focusses on one issue related
to this model, namely that the corresponding category is not cartesian
closed in a satisfying sense: while there is a workaround, the resulting
model is not completely satisfying from category-theoretic standards.
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Our contribution was to show how this issue can be avoided by working
with polynomial functors in groupoids instead of sets. This result was
moreover formalised in Agda (although I did not contribute to the
formalisation1). 1: Moreover, the formalisation was not

completely finalised. It was properly fi-
nalised by Elies Harington.

Simplifying normal functors [24] [24]: Rogers et al. (2024), Simplifying nor-
mal functors: an old and a new model of
𝜆-calculusThe second work was done in collaboration with Morgan Rogers and

William Troiani, and somehow takes things in the opposite direction.
Instead of moving to a more complex setting (from sets to groupoids),
we worked on the model’s basic constructions to try and keep to a
minimal setting. We end up with a much simplified model in which
proofs/programs are represented as continuous functions on multisets.
This simplification allows us to exhibit for the first time to interpretation
of linear logic in the normal functor model, and shed light on how the
interpretation circumvents the lack of cartesian closure (explained in the
previous paragraph). In particular, the interpretation of the application
of a lambda-term to another differs from standard interpretations. In
particular, the resulting model is not captured by the standard definition
of a categorical model of linear logic, showing that this definition motivated
by having a ‘nice’ categorical structure ended up leaving aside perfectly
correct denotational models. We are currently working on aa generalisa-
tion of this work in which we will provide an axiomatisation of a family
of denotational models of lambda-calculus that do not fit the standard
category-theoretic definition.

Game Semantics for Concurrent Processes [25, 26] [25]: Eberhart et al. (2015), An Intension-
ally Fully-abstract Sheaf Model for pi
[26]: Eberhart et al. (2017), An intension-
ally fully-abstract sheaf model for 𝜋 (ex-
panded version)

An older result, with T. Hirschowitz and C. Eberhard, investigated sheaf
game semantics for concurrent processes. We propose a compositional
model for the pi-calculus in which processes are interpreted as sheaves
on certain simple sites. Such sheaves are a concurrent form of innocent
strategies, in the sense of Hyland-Ong/Nickau game semantics [27,
28]. We define an analogue of fair testing equivalence in the model [27]: Hyland et al. (2000), On full abstrac-

tion for PCF: I, II, and III
[28]: Nickau (1994), Hereditarily Sequential
Functionals

and show that our interpretation is intensionally fully abstract for it.
That is, the interpretation preserves and reflects fair testing equivalence;
and furthermore, any innocent strategy is fair testing equivalent to
the interpretation of some process. The central part of this work is
the construction of sites, relying on a combinatorial presentation of
pi-calculus traces in the spirit of string diagrams.

Linear realisability

Linear realisability was the topic of my PhD. I therefore naturally contin-
ued to dabble in this domain. Most of the results, in particular the series
of work on Interaction Graphs [13, 15–17, 29, 30], are presented in chap- [13]: Seiller (2019), Interaction Graphs: Ex-

ponentials
[15]: Seiller (2012), Interaction Graphs: Mul-
tiplicatives
[16]: Seiller (2016), Interaction graphs: Ad-
ditives
[17]: Seiller (2017), Interaction Graphs:
Graphings
[29]: Seiller (2016), Interaction Graphs: Full
Linear Logic
[30]: Nguyên et al. (2018), Coherent Inter-
action Graphs

ter 10. More recent work with A. Ragot and B. Eng on more syntactical
linear realisability constructions will be mentioned but not presented
[31–33]. The work with V. Maestracci [34] tries to formally establish

[31]: Ragot et al. (2023), Linear Realisability
Over Nets and Second Order Quantification
(short paper)
[32]: Ragot et al. (2024), Linear realisability
on untyped nets
[33]: Eng et al. (2022), Multiplicative linear
logic from a resolution-based tile system
[34]: Maestracci et al. (2023), Linear Real-
isability and Cobordisms

the 2-cocycle property (presented in chapter 9) as a higher-dimensional
associativity. It is however still ongoing work but I hope it will lead to a
proper understanding of this essential property in terms of (co)homology
and/or homotopy.
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2.2. Implicit Computational complexity

Linear realisability models are particularly interesting from the point
of view of computational complexity. This lead me to characterisations
of complexity classes that borrows from implicit complexity which are
explained in chapter chapter 11. Implicit computational complexity (ICC)
is a subfield of computational complexity in which complexity classes
are characterised without references to explicit machine models. There
are (at least) three distinct approaches to ICC.

▶ One can study mathematically the function algebras corresponding
to a complexity class. For instance Bellantoni and Cook [35] showed [35]: Bellantoni et al. (1992), A new

recursion-theoretic characterization of the
polytime functions

that the set of functions computable in polynomial time can be
defined as the class consisting of basic functions (projections,
constants, successors, predecessor), and closed under conditionals,
safe composition and predicative recursion on notations (a variant
of the recursion scheme that limits its expressivity).

▶ One can study logical systems which, through the proofs-as-
programs correspondence, will correspond to programs computing
exactly the functions in a given complexity class. For instance, Gi-
rard introduced a variant of linear logic, called Bounded Linear Logic
[36], which corresponds to the class of functions computable in [36]: Girard et al. (1992), Bounded linear

logic: a modular approach to polynomial-time
computability

polynomial time.
▶ One can study rewriting systems and annotations of programs.

This is stems from the so-called Copenhagen school. For instance
the size-change principle [37] stems from this line of research. [37]: Lee et al. (2001), The size-change prin-

ciple for program terminationAnother major result is the mwp-flow analysis [1] which introduces
[1]: Jones et al. (2009), A Flow Calculus of
Mwp-bounds for Complexity Analysis

a derivation system that ensure polynomial bounds on the growth
of variables in a simple (toy) imperative language.

Implicit complexity [38–41] [38]: Aubert et al. (2016), Characterizing
co-NL by a group action
[39]: Aubert et al. (2016), Logarithmic Space
and Permutations
[40]: Aubert et al. (2014), Logic Program-
ming and Logarithmic Space
[41]: Aubert et al. (2016), Unary Resolu-
tion: Characterizing Ptime

I developed, in a joint work with C. Aubert, a completely new approach
to computational complexity that was proposed by Girard [42]. Based

[42]: Girard (2012), Normativity in Logic

on insights and ideas from the hyperfinite geometry of interaction
construction, this approach is based on the use of the crossed product‗

construction to characterise complexity classes as sets of operators on
the hyperfinite factor of type II1. Introducing a suited notion of abstract
machines — the pointer machines, we show how they can be represented
by operators induced by a group action. In a first work, we showed
how this approach yields a characterisation of the non-deterministic
space complexity class coNLogspace. This work quickly lead us to a
characterisation of the class Logspace of deterministic logarithmic space
predicates by showing that the restriction to deterministic machines
corresponds to a restriction on the norm of operators considered.

I then worked in collaboration with C. Aubert, M. Bagnol and P. Pistone
to adapt these techniques to a more syntactic setting. A work by C. Aubert
and M. Bagnol [43] mimic these techniques by replacing operators with [43]: Aubert et al. (2014), Unification and

Logarithmic Spaceabstract term rewriting systems. Although this work in itself is a simple
rephrasing of previously obtained results obtained with Aubert, it led
us — C. Aubert, M. Bagnol, P. Pistone and I — to a natural, less ad-hoc,
generalisation of the results which can be interesting for applications in
logic programming [40]. The result was then extended and we obtained [40]: Aubert et al. (2014), Logic Program-

ming and Logarithmic Space

‗ Or rather a particular case of it: the wreath product construction.
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characterisation of the class Ptime as the set of logic programs using only
unary predicates [41]. [41]: Aubert et al. (2016), Unary Resolution:

Characterizing Ptime
While this line of work is interesting, I identified two important defects.
First, although it uses the same language as Girard’s hyperfinite GoI
model the characterisations thus obtained are not related to the GoI
model. In other terms, the computational complexity results has nothing
to do with the realizability models except for the employed techniques.
Secondly, the move to a more syntactic framework seems to me a step
back after the operator-theoretic characterisations as it throws away the
mathematical structures behind the characterisations.

I therefore focussed on the objective of obtaining a deeper understanding
of how complexity classes can be related to these mathematical objects in
order to provide complexity theorists with new techniques and invariants.
The insights and intuitions gained from these work as well as a reflexion
about their limitations lead me to a more interesting approach based on
a refinement of my own earlier work on realizability models for linear
logic.

von Neumann algebras and complexity [10] [10]: Seiller (2018), A Correspondence be-
tween Maximal Abelian Sub-Algebras and
Linear Logic FragmentsSomehow in parallel of these results, I obtained one of my preferred

results which I detail in chapter 11. It shows the correspondence between
the classification of maximal abelian sub-algebras of von Neumann
algebras and the expressivity of the fragment of linear logic one can
interpret w.r.t. this sub-algebra. I have some to understand this work as a
kind of prefiguration of the semantics approach to implicit complexity
that followed and which improved on the work presented in the previous
two subsections.

Characterising complexity classes [44, 45] [44]: Seiller (2018), Interaction Graphs: Non-
deterministic Automata
[45]: Seiller (2023), Implicit complexity
through linear realisability: polynomial time
and probabilistic classes

The results obtained here are discussed in chapter 11, and relate to the
different results explained above. It somehow exhibits characterisations
of complexity classes as in the work described in subsection 2.2 and
subsection 3 while preserving the connection with (linear logic): the
characterisation makes use of the linear realisability models based on
graphings. This somehow continues the work relating maximal von
Neumann algebras and logical expressivity, through the Murray and
von Neumann group measure space construction as explained in chap-
ter 1. It lead me to the following result, relating complexity classes and
group/monoid actions.

Monoid Action deterministic model non-deterministic model probabilistic model
𝔪1 Regular Regular Regular s.t.ochastic
...

...
...

...
...

𝔪𝑘 d𝑘 n𝑘 co-n𝑘 p𝑘
...

...
...

...
...

𝔪∞ Logspace NLogspace coNLogspace PLogspace
𝔫∞ Ptime Ptime Ptime PPtime

Here the intermediate classes between regular languages and logarithmic
space are defined in terms of classes of automata.
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2.3. Computability, Complexity

As explained above the latter results lead me to conjecture a strong connec-
tion between the classification of monoid actions and the corresponding
complexity classes. Part of my subsequent work has been dedicated to
understanding if such a connection exists and if it can be exploited. As
part of this investigation, I tried to understand if the techniques involved
were related to the geometric complexity theory program of Mulmuley and
Sohoni, leading me to work on Mulmuley’s result establishing lower
bounds for ‘PRAMs without bit operations’. This then lead me further
to work on non-implicit approaches to complexity theory, and more
specifically algebraic complexity and Kolmogorov complexity.

Entropy and algebraic lower bounds [46] [46]: Seiller et al. (2022), Unifying lower
bounds for algebraic machines, semantically

In trying to understand Mulmuley’s lower bound result, I realised that
the proof could be reformulated using the representation of programs as
graphings that underlies the implicit complexity approach. As we tried
to formalise this, we realised that this reformulation could in fact be
applied to several different lower bounds results in algebraic complexity,
namely lower bounds results of Steele and Yao on algebraic decision
trees, of Ben Or on lower bounds for algebraic computational trees, of
Cucker on the separation between NCR and PtimeR.

The result is presented in more details in chapter 8.

Kolmogorov complexity [47] [47]: Léchine et al. (2024), Kolmogorov
time hierarchy and novelty games

I was also led to work on time-bounded Kolmogorov complexity. This
was sparked both from my wish to understand different lower bounds
methods in computational complexity, and a specific interest in the
notion because of its relation with topological entropy. The Kolmogorov
complexity of a word 𝑤 ∈ {0, 1}𝑛 is defined as the size of the (description
of) the minimal Turing machine that outputs 𝑤 [48]. The notion depends [48]: Li et al. (1993), An introduction to

Kolmogorov complexity and its applicationson the choice of a universal Turing machine, but is shown to be sufficiently
stable (for almost all strings, the choice only modifies the value of the
Kolmogorov complexity by an additive constant). As part of a work with
Ulysse Léchine, we investigate an old problem related to time-bounded
Kolmogorov complexity, that is the Kolmogorov complexity of words when
the time complexity of the machine producing the string is bounded. In
general we fix a universal Turing machine 𝕌 and define:

𝐾[ 𝑓 (𝑛), 𝑡(𝑛), 𝑠(𝑛)] = {𝑤 ∈ {0, 1}𝑛 | ∃𝜙 ∈ {0, 1} 𝑓 (𝑛) ,𝕌(𝜙) ⩽𝑡(𝑛),⩽𝑠(𝑛)−→ 𝑤},

where 𝕌(𝜙) ⩽𝑡(𝑛),⩽𝑠(𝑛)−→ 𝑤 means that 𝕌(𝜙) computes 𝑤 in time bounded
by 𝑡(𝑛) and space bounded by 𝑠(𝑛). We can then define the corresponding
complexity classes:

K[ 𝑓 (·), 𝑡(·), 𝑠(·)] =
⋃
𝑛

𝐾[ 𝑓 (𝑛), 𝑡(𝑛), 𝑠(𝑛)].

One natural question is that of separation: can we prove that allowing
more time will lead to the computation of more words? The question
can be formulated as follows: can we prove that2 K[ 𝑓 (·), 𝑡(·), 𝑠(·)] ⊊ 2: Here the symbol ⊆ means that there

exists an infinite number of values of 𝑛
for which the inclusion is strict.

K[ 𝑓 (·), 𝛼(·)𝑡(·), 𝛽(·)𝑠(·)] for some functions 𝛼, 𝛽? One instance of this
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question was answered positively by Longpré in 1986 [49] for 𝛼(𝑛) = 2 𝑓 (𝑛) [49]: Longpré (1986), Resource Bounded
Kolmogorov Complexity, A Link between
Computational Complexity & Information
Theory

when no space bounds are given (we write 𝑠(·) = ∞ in this case). The
method is a standard diagonalisation argument based on the possibility
of enumerating all machines 𝜙 ∈ {0, 1} 𝑓 (𝑛) and running them. This result
was not improved since Longpré thesis3. 3: It is in fact given as an open problem

in exercise 7.1.15 in Li and Vitany [48]
since the first edition of the book.The approach Ulysse and I follow is simple, and uses a very natural

strategy: is it possible to run only part of the set of all machines and
still work out a diagonalisation argument? More formally: if 𝛼(𝑛) is a
function smaller than 2 𝑓 (𝑛) the number of 𝜙 ∈ {0, 1} 𝑓 (𝑛) one can compute
is necessarily not exhaustive. But considering a family of 2 𝑓 (𝑛)

𝛼(𝑛) machines
can be exhaustive. How can one adapt a diagonalisation argument in
this case? We should be able to define a function 𝑆 that takes as input
𝛼(𝑛) values ®𝑎 = 𝑎1 , . . . , 𝑎𝛼(𝑛) (corresponding to the values of 𝜙 a single
machine can check) and produces a new value 𝑆(®𝑎), with the following
constraint:

∀®𝑎1 , . . . , ®𝑎
2 𝑓 (𝑛)
𝛼(𝑛) , ∃𝑖 ∈ [1, . . . , 2 𝑓 (𝑛)

𝛼(𝑛) ], ∀𝑗 ∈ [1, . . . ,
2 𝑓 (𝑛)

𝛼(𝑛) ], 𝑆(®𝑎𝑖) ∉ ®𝑎 𝑗 .

The question then boils down to a simple (to express) combinatorial game.
Given 𝑝 players, each player receives a (private) set of 𝑘 values 𝑎1 , . . . , 𝑎𝑘
in [0, . . . , 𝑀], and produces a value4 𝑆𝑝(𝑎1 , . . . , 𝑎𝑘) ∈ [0, . . . , 𝑀]: the 4: Note that here we generalise the pre-

vious paragraph by allowing each player
to have a different strategy; such a solu-
tion would work as well, but it turns out
that our solution does not distinguish
between players.

players win the game if at least one of the produced values is not contained
in the set of all private value initially received by the players. If a winning
strategy exists and can be computed in reasonable time, then we can
improve Longpré’s result.

We spent a long time looking for solutions. For 𝑘 = 1, a simple winning
strategy is given by 𝑆(𝑥) = 𝑥+1. A solution for 𝑝 = 2 and arbitrary values
of 𝑘 was found based on graph theory: one can prove by combinatorial
arguments that there exists a graph 𝐺 such that for every 𝑘-tuple of
vertices ®𝑣 = 𝑣1 , . . . , 𝑣𝑘 , there exists vertices 𝑠0(®𝑣) and 𝑠1(®𝑣) such that
for all 𝑣𝑖 , there exists an edge between 𝑣𝑖 and 𝑠0(®𝑣) and there are no
edges between 𝑣𝑖 and 𝑠1(®𝑣). Defining the strategies of the two players
as outputting 𝑠0(®𝑣) and 𝑠1(®𝑣) respectively. But no generalisation of this
method can be found for more players. In particular, the natural approach
based on reasoning on coloured graphs fails because of the constraint
that no polychromatic cycle appear in the graph makes the probabilistic
reasoning fail (the probability that a random 3-coloured graph does not
contain a polychromatic cycle goes to 0 as the size of the graph grows).

In the end, I found a general strategy, but the method uses a lot of space:
the value of 𝑀 needs to be very large w.r.t. the values of 𝑝 and 𝑘. More
precisely, the method gives (𝑝𝑘)𝑝𝑘 as a lower bound for 𝑀. While a bit
involved, the technique only uses basic operations on the digits used in
writing the arguments in the base 𝑝𝑘 . As a consequence, we have the
following partial strengthening of Longpré: for 𝑓 (𝑛) = 𝑜(log(𝑛)), and
𝛼(𝑛) = 𝑓 (𝑛)2 𝑓 (𝑛)

log(𝑛) , we have:

K[ 𝑓 (·), 𝑡(·),∞] ⊊ K[ 𝑓 (·), 𝛼(·)𝑡(·),∞].

We however hope that the result can be improved by finding a more
efficient strategy, maybe exploiting the fact that some relaxations of the
problem could be considered5 (i.e. different strategies for the different 5: Since first writing this, it appeared in

a discussion with Peter Selinger, that it
should be possible to improve the lower
bound for 𝑀 to 𝑂((𝑘𝑘 )𝑝).

players, but also strategies in which players may provide more than one
answer). Additionally, the combinatorial problem seems general enough
that it could be of use in different contexts.
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2.4. Automata and randomness

Somehow related to Kolmogorov complexity (although this part of my
work does not originate from the latter), I have collaborated with Jakob G.
Simonsen on Agafonov’s theorem. This result concerns normal sequences,
which are sequences that are random in a weak sense. I.e., a sequence
𝛼 ∈ {0, 1}𝜔 is normal if and only if for all word𝑤 ∈ {0, 1}𝑛 , the following
limit is well defined and:

freq𝑤(𝛼) = lim
𝑛→∞

Card{𝑖 ⩽ 𝑛 | 𝛼𝑖𝛼𝑖+1 . . . 𝛼𝑖+len(𝑤)−1 = 𝑤}
𝑛

= 2−len(𝑤).

Agafonov’s theorem is concerned with the selection of normal subse-
quences: given a language 𝐿 ⊂ {0, 1}∗ and a sequence 𝛼 = 𝛼1𝛼2 . . . , one
can define the selected subsequence 𝐿(𝛼) as the sequence of bits 𝛼𝑖1𝛼𝑖2 . . .
where 𝑖1 < 𝑖2 < . . . and {𝑖𝑘 | 𝑘 ∈ N} = {𝑖 ∈ N | 𝛼1𝛼2 . . . 𝛼𝑖−1 ∈ 𝐿}. In
less formal terms, 𝐿(𝛼) is the sequence of bits in 𝛼 that follow a prefix
that belong in 𝐿. Note that this sequence may not be infinite (for instance
if the language contains only words starting with a 1). The theorem states
that a sequence 𝛼 is normal if and only if for all finite-state automata 𝐴
the subsequence 𝐴[𝛼] is either finite or normal (where 𝐴[𝛼] denotes the
subsequence selected by the language accepted by 𝐴).

Agafonov’s proof of Agafonov’s theorem [50] [50]: Seiller et al. (2020), An Embellished
Account of Agafonov’s Proof of Agafonov’s
TheoremOur first contribution on the topic was to find, translate, and modernise

Agafonov’s own proof of the theorem. Indeed, the known proofs are
usually based on more involved results (of which Agafonov’s theorem is
a corollary), and the community did not know of Agafonov’s original
proof but only of the translated two-page announcement of the result that
appeared in the AMS Translation volumes. Some articles even claimed
that Agafonov did not publish a proof of his theorem. After finding the
original Agafonov paper containing the proof (in russian), we translated
it into english before detailing and modernising the proof (the original
paper was 4 pages long, and used outdated versions of some results).

Agafonov’s theorem for infinite alphabets and arbitrary
distributions [51] [51]: Seiller et al. (2022), Agafonov’s Theo-

rem for finite and infinite alphabets and prob-
ability distributions different from equidistri-
butionThe above translated proof was however instrumental in a generalisation

of Agafonov’s result. This generalisation answers two questions:

1. Can the result be extended to arbitrary (including infinite) alpha-
bets?

2. Can the result be extended to arbitrary distributions (over finite
words)?

We therefore considered the case of arbitrary probability distributions
𝜇 over the finite words over an alphabet Σ (this in fact corresponds to
choosing a distribution on the set Σ𝑛 for all 𝑛). Given such a distribution,
we define the notion of 𝜇-distributed sequence as a generalisation of
normal sequences, namely 𝛼 is 𝜇-distributed if and only if for all word
𝑤 ∈ Σ𝑛 , the following limit is well defined and:

freq𝑤(𝛼) = lim
𝑛→∞

Card{𝑖 ⩽ 𝑛 | 𝛼𝑖𝛼𝑖+1 . . . 𝛼𝑖+len(𝑤)−1 = 𝑤}
𝑛

= 𝜇(𝑤).
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We then proved the following result that settles the question of characteris-
ing exactly the situations in which (the equivalent of) Agafonov’s theorem
hold for𝜇-distributed sequences. For this, let us call a probability distribu-
tion Bernoulli if it is induced by a distribution on the alphabet: there exists
𝜇̃ a probability distribution on Σ such that 𝜇(𝑎1 . . . 𝑎𝑛) =

∏𝑛
𝑖=1 𝜇̃(𝑎𝑖). Our

result can then be stated as follows (note the alphabet is allowed to be
infinite).

Theorem 2.4.1 Agafonov’s theorem holds for 𝜇-distributed sequences if and
only if 𝜇 is Bernoulli.

Extensions

We are still working on the topic, on two distinct remaining questions.

▶ First: we recently showed how this result can be proved (with
a slightly modified statement) for selection by (some classes of)
probabilistic automata [52]. Agafonov’s theorem (even on {0, 1}with [52]: Léchine et al. (2024), Agafonov’s the-

orem for probabilistic selectorsthe equidistribution) was not known to hold for the selection by
probabilistic automata before that.

▶ Second: we tried to understand how far the set of languages
preserving normality can be extended beyond regular languages.
This question is a very hard open question in the small community
of people working on normality. We do not have proper results
for the moment, but we have made some progress, with a number
of counterexample of languages that are very close to regular
languages and still do not preserve normality.

2.5. Verification

One quite different aspect of my research in the last years has been
about applying methods and ideas coming from implicit computational
complexity to produce implementable static analyses of programs. All
results summarised here are detailed in chapter 7.

Automatic Code Optimisation in Compilers [53] [53]: Moyen et al. (2017), Loop Quasi-
Invariant Chunk Detection

In a work with J.-Y. Moyen and T. Rubiano, while we were all working at
the University of Copenhagen, we showed how techniques from Implicit
Computational Complexity can be applied in a completely different field,
namely in compiler construction. More precisely, we showed how abstract
graph representations defined for static analysis of complexity can be
used to automatically detect invariants and quasi-invariants in while
loops. This leads to code optimisation, as invariants and quasi-invariants
can then be pulled out of the loop to avoid being unnecessarily executed
at each iteration. This code optimisation, on our initial tests, proves to
be more efficient that currently implemented methods in the popular
compilers llvm and gcc. We are currently implementing the method in
llvm.

This work was only the start of a potentially fruitful series of adaptation
of techniques of Implicit Computational Complexity in compiler con-
struction. Borrowing more involved techniques, we can hope to provide
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compiler passes that could statically analyse the complexity of the pro-
gram being compiled to provide certificates of complexity bounds. For
instance Jones and Kristiansen’s mwp-polynomials [1] use a clever improve- [1]: Jones et al. (2009), A Flow Calculus of

Mwp-bounds for Complexity Analysisment over the dependency graphs we used to detect quasi-invariants,
which we will use to provide certificate of polynomial time bounds of
compiled programs.

An implementable version of MWP [54, 55] [54]: Aubert et al. (2022), mwp-Analysis
Improvement and Implementation: Realizing
Implicit Computational Complexity
[55]: Aubert et al. (2023), pymwp: A Static
Analyzer Determining Polynomial Growth
Bounds

The next first goal was therefore to implement the Jones and Kristiansen
mwp-flow analysis. This work was the inspiration behind our first
work on loop quasi-invariants. Indeed, the dependency analysis was a
simplification of Jones and Kristiansen’s mwp calculus. However, there
was a number of issues to be dealt with. The first (minor) difficulty
was the fact that the analysis could in some cases fail. The second
(major) difficulty was that the original system was non-deterministic
and polynomial bounds on the growth of variables in a program was
ensured by the existence of a correct derivation. The last difficulty,
related to the non-determinism, was the feasibility of the analysis as
the computation of the mwp-bounds was conjectured by Jones and
Kristiansen to be an NP-complete problem. We solved the first two issues
by designing an alternative analysis which was deterministic: this was
done by representing non-deterministic choices by variables. Instead of a
family of matrices with coefficients in the semiring {𝑚, 𝑤, 𝑝}, our analysis
produce a single matrix with coefficients in ‘polynomials’ in these choice
variables (with scalars in {𝑚, 𝑤, 𝑝, 𝑖} – 𝑖 standing for infinite to deal
with non-terminating branches of the initial analysis). We implemented
this analysis in a tool, in which we separated the decision problem (the
existence of a mwp-bound) from the computation problem (computing
specific mwp-bounds) to deal with feasibility. The resulting tool is quite
fast, using both efficient algorithms (inspired by techniques akin to what
is done with Gröbner bases) and the possibility of not computing specific
bounds.

Automatic parallelisation [56] [56]: Aubert et al. (2023), Distributing and
Parallelizing Non-canonical Loops

We also published a paper showing how the dependency analysis used
in the first work on peeling loops can be used to split loops. Indeed, it is
possible to automatically analyse C code to detect the tree of dependencies
in loops’ bodies. From this, one can detect separated branches that could
be parallelised. This induces a splitting of loops that is in some sense
orthogonal to the usual loop parallelisations techniques. We showed
on (a reduced version of) standard benchmarks that the automatically
produced C code, when annotated properly with OpenMP annotations,
compares positively to standard tools.

2.6. Philosophy

Lastly, I have been collaborating with philosophers since the start of my
PhD thesis. This collaboration has been essential for me, as it has forced
me to consider my current work and perspectives from a higher vantage
point. This reflexivity has enriched my reflexion, and will certainly remain
an important part of my approach to research. Generally speaking, my
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contributions in this direction consists in understanding how recent
techniques and results in mathematics and computer science can shed
new light on old problems from philosophy of science.

The computational meaning of axioms [57] [57]: Naibo et al. (2016), On the computa-
tional meaning of axioms

In this paper with A. Naibo and M. Petrolo, we investigate an anti-
realist theory of meaning suitable for both logical and proper axioms. As
opposed to other anti-realist accounts, like Dummett-Prawitz verification-
ism, the standard framework of classical logic is not called into question.
In particular, semantical features are not limited solely to inferential ones,
but computational aspects also play an essential role in the process of
determination of meaning. In order to deal with such computational
aspects, a relaxation of syntax is shown to be necessary. This leads to a
general kind of proof theory — abstracting the approach of realizability
models for linear logic –, where the objects of study are not typed objects
like deductions, but rather untyped ones, in which formulas have been
replaced by geometrical configurations.

Verificationism and classical realizability [58] [58]: Naibo et al. (2015), Verificationism
and classical realizability

In this work, we investigated the question of whether Krivine’s classical
realizability can provide a verificationist interpretation of classical logic.
We argue that this kind of realizability can be considered an adequate
candidate for this semantic role, provided that the notion of verification
involved is no longer based on proofs, but on programs. On this basis, we
show that a special reading of classical realizability is compatible with
a verificationist theory of meaning, insofar as pure logic is concerned.
Crucially, in order to remain faithful to a fundamental verificationist
tenet, we show that classical realizability can be understood from a single-
agent perspective, thus avoiding the usual game-theoretic interpretation
involving at least two players

Logical Constants [59] [59]: Naibo et al. (n.d.), Logical Constants
From a Computational Point of View

This work was started at the end of my PhD, in collaboration with A.
Naibo and M. Petrolo. We study how linear realisability techniques can
bring a new perspective on the old question: "what is a logical constant?"
(note here that ‘constant’ should be understood as arbitrary connective, not
only 0-ary). Our proposal stands in the line of proof-theoretic semantics,
exploiting in an essential way the proofs-as-programs correspondence
and the techniques from the field of realizability models for linear logic.
We first present the inferentialist position in order to point out some of its
problems. Their analysis and solutions are carried out in the light of the
Curry-Howard correspondence. It is on this basis that we can formulate
a necessary condition for logicality, which naturally emerges from the
computational point of view adopted here.

The work has been presented in many different venues throughout the
years, but we never managed to produced a finished version of the paper
(even though I believe it has been cited at least once). Hopefully, I can
focus on doing so after finishing up the current document.
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Understanding Weyl [60] [60]: Joinet et al. (2021), From abstrac-
tion and indiscernibility to classification and
types: revisiting Hermann Weyl’s theory of
ideal elementsThe linear realisability techniques involve a definition of the notion of

type based on some orthogonality relation corresponding to negation. This
construction can be abstracted and simplified to define a notion of type
based on sets 𝑋,𝑌 equipped with a binary relation R ⊂ 𝑋 × 𝑌. This
simplified construction is related to work by Birkhoff [61] and has already [61]: Birkhoff (1940), Lattice theory
been introduced in computer science under the name formal concept
analysis [62]. In a collaboration with Jean-Baptiste Joinet, we showed [62]: Wille (1982), Restructuring Lattice

Theory: An Approach Based on Hierarchies
of Concepts

how these techniques can be understood as a theory of classification. We
also discuss how the techniques allow to define new concepts. The
generally accepted and well studied theory for doing so in philosophy
of logic is the so-called ‘definition by abstraction’, which is based on
equivalence relations. We explain in this work the constructions in linear
realisability and formal concept analysis are more general than definition
by abstraction and formalise in a way Weyl’s theory of ideal elements [63,
64], an alternative proposal for defining concepts. [63]: Weyl (1910), Über die Definitionen der

mathematischen Grundbegriffe
[64]: Weyl (1949), Philosophy of Mathemat-
ics and Natural SciencesEpistemology of computer science [65, 66] [65]: Naibo et al. (n.d.), Algorithms
[66]: Naibo et al. (n.d.), An ontology of
computer scienceIn the last three or four years, I have been collaborating with Alberto

Naibo on the philosophy of computer science. The field is still under-
developed, and work focus on anecdotic questions (such as so-called
‘deviant encodings’). We have been building up a small team consisting
of both computer scientists and philosophers over the years, which meets
regularly (once every two weeks) to discuss foundational notions in com-
puter science. This was initiated by a technical development in my work:
I realised that the notion of monoid action underlying my work on linear
realisability could be understood as a formal definition of the notion of
model of computation. This leads to an abstract theory of computability
providing formal definitions of the basic notions of computer science:
model of computation, machine, program, algorithm, etc. This specific
aspect is detailed in chapter 6.



Part I.

A mathematical theory of
computer science



Abstract models of computation 3.
3.1. Definition

Throughout the years, I have proposed several small variants of the
notion of "abstract model of computation". The principle is essentially the
same: a model of computation is a monoid action on a space 𝑀 ↷ X. The
space is thought of as a space of configurations, i.e. the potential states
the machine can find itself in. Each available instruction in the machine
then defines a endomorphism of X. The monoid structure naturally arises
from the ability of performing sequences of instructions. This notion
however requires a number of subtle modifications.

The first is that while all endomorphisms described by the action are
potentially performed by the machine, computability puts special interest
in "basic instructions" or atomic instructions – that correspond to a single
instruction in the machine model. This is to be opposed to composed
ones. As a simple example, one wants to distinguish between moving
the head of a Turing machine to the next bit on the right, and moving the
tape head to the second bit to the right – an operation which requires two
steps of computation. As a consequence, we will work with presentations
of monoids in order to distinguish the set of atomic instructions which
generates the action.

The second is the fact that models of computation also include the
possibility to read/check some properties of the configuration. I.e. a
Turing machine allows to verify the value on the tape at the head’s position,
and perform different instructions based on this value. Mathematically,
this means programs are allowed to use instructions only on subspaces.
In first iterations of this approach, this was included in the notion of
graphing. This is somehow explained by the fact that graphings arose
from a different context and were only a posteriori understood as abstract
machines. But this definition is too permissive: allowing for just any
subspace to be considered would allow to encode uncomputable sets. I.e.
in the basic representation of Turing machine presented below, it would
be possible to define a machine that accepts exactly on the subspace of
configurations containing a binary integer 𝑛 such that the 𝑛-th Turing
machine terminates on 𝑛, and rejects otherwise. To avoid this, previous
versions of this very text considered the addition of a set of "atomic
conditions" – some partitions of the space allowed to be used in the
machines. This addition was neither practical nor aesthetically pleasing1. 1: The approach will nonetheless be de-

tailed in a later section to bridge the new
definition with the definition used in my
published papers.

It only later appeared to me that these conditions could be incorporated
within the monoid action itself, since a subspace is defined by the
projection onto it.

These considerations lead me to the following definition.

Definition 3.1.1 (AMC) An abstract model of computation (amc) is a
monoid action 𝛼 : 𝕄(𝐼)↷ X where:

1. X is a space of configurations, together with a notion of morphisms;
2. 𝐼 is a set of instructions, generating the monoid action 𝛼;

We first note that the monoid 𝕄(𝐼) should be understood as the monoid
defined by the set of generators 𝐼 and the relations satisfied by the
maps 𝛼(𝑖) for 𝑖 ∈ 𝐼. This can also be understood as follows: one picks a
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generating set 𝐼 and maps 𝛼(𝑖) for 𝑖 ∈ 𝐼, then considers the submonoid
of Hom(X,X) generated by 𝛼𝐼.

Remark 3.1.1 This definition of amc can be formalised using category
theory as follows: an abstract model of computation is a functor from a
category into a category of spaces. While this categorical definition may
seem more general, the two formalisms are in fact equivalent: considering
the coproduct of the spaces in the image of the functor, one recovers a
monoid of endomorphisms over a single space.

Before going through (many) examples, I want to address the question
of restrictions. Some will view this notion of model of computation too
general. And indeed, it is very general and captures some models that
some may not consider as models of computation.

One standard restriction, which is considered for instance by Gandy [67] [67]: Gandy (1980), Church’s Thesis and
Principles for Mechanismsor Gurevich [68], is that of ‘bounded exploration’, or some notion of
[68]: Gurevich (2000), Sequential Abstract
State Machines capture Sequential Algo-
rithms

locality. This restriction, while never explicitly motivated, may arise from
questions of physical realisability: if a physical device were to be built
in order to compute according to the principles defined by the model of
computation, then laws of physics would impose some constraints. In
particular, a step of computation may not affect a value that is arbitrarily
‘far away’. These conditions could be imposed in the proposed formalism
by imposing a topology on the underlying space and considering only
continuous actions. I must say, however, that these considerations do not
really mean a lot once the model of computation is separated from the cost
model (accounting for complexity), which is the case here (complexity is
discussed in chapter 5). Indeed, one could very well allow an instruction
to modify an arbitrary far-away value while giving it a cost proportional
to the distance. In that case, the model remains ‘realistic’ while not
satisfying the locality constraints.

The point of view taken here is that the proposed definition is in some way
‘maximal’, and offers a mathematical framework in which restrictions may
be discussed and defined formally. I do not oppose to define, question,
and study subtle conditions that models of computations should satisfy.
I believe the current approach will offer a way to do so in a proper and
precise way.

3.2. Examples

Machine models

We start with a detailed example. The machine model is that of single-
tape Turing machines over the alphabet {0, 1}. While the following amc
captures this model, it is not unique. Other amc𝑠 corresponding to the
same model will be discussed later.

Example 3.2.1 The (single tape) Turing machines model can be repre-
sented by the amc

𝛼tm : 𝕄(Instrtm)↷ Xtm

defined as follows.

↓

★ 0 1 0 1 1 ★ 0 0 0 0 ★ 1 1 1 0 0 1 1 0 1 0 ★★ ★

↓
0 1 0 1 1 ★ 0 0 0 0 ★ 1 1 1 0 0 1 1 0 1 0 ★ ★★ ★

𝛼tm(right)

(a) Instruction right.

↓

★ 0 1 0 1 1 ★ 0 0 0 0 ★ 1 1 1 0 0 1 1 0 1 0 ★★ ★

↓
★ ★ 0 1 0 1 1 ★ 0 0 0 0 ★ 1 1 1 0 0 1 1 0 1 0★ ★

𝛼tm(left)

(b) Instruction left.

↓

★ 0 1 0 1 1 ★ 0 0 0 0 ★ 1 1 1 0 0 1 1 0 1 0 ★★ ★

↓
★ 0 1 0 1 1 ★ 0 0 0 0 0 1 1 1 0 0 1 1 0 1 0 ★★ ★

𝛼tm(write0)

(c) Instruction write0.

↓

★ 0 1 0 1 1 ★ 0 0 0 0 ★ 1 1 1 0 0 1 1 0 1 0 ★★ ★

↓
★ 0 1 0 1 1 ★ 0 0 0 0 1 1 1 1 0 0 1 1 0 1 0 ★★ ★

𝛼tm(write1)

(d) Instruction write1.

↓

★ 0 1 0 1 1 ★ 0 0 0 0 ★ 1 1 1 0 0 1 1 0 1 0 ★★ ★

↓
★ 0 1 0 1 1 ★ 0 0 0 0 ★ 1 1 1 0 0 1 1 0 1 0 ★★ ★

𝛼tm(write★)

(e) Instruction write★.

Figure 3.1.: Illustration of instructions in
the Turing machine amc.

▶ The space of configuration Xtm is defined as the space of Z-indexed
sequences in {0, 1,★}which are almost-always equal to ★:

Xtm = {(𝑠𝑖)𝑖∈Z | 𝑠𝑖 ∈ {0, 1,★},Card{𝑖 ∈ Z | 𝑠𝑖 ≠ ★} < ∞}.
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Here ★ represents the empty symbol, and it is implied that the
head of the Turing machine points to the 0-th indexed element. The
notion of morphism is here that of partial maps, allowing to define
read instructions.

▶ The set Instrtm of atomic instructions of the Turing machine model
is defined as

{right, left} ∪ {write𝑖 | 𝑖 ∈ {0, 1,★}} ∪ {read𝑖 | 𝑖 ∈ {0, 1,★}},

and the action 𝛼tm is induced by the following actions realising
these instructions:

• move the head to the right; this is represented as the shift:

𝛼tm(right) : (𝑠𝑖)𝑖∈Z ↦→ (𝑠𝑖−1)𝑖∈Z;

• move the head to the left; this is represented as the inverse of
the shift:

𝛼tm(left) : (𝑠𝑖)𝑖∈Z ↦→ (𝑠𝑖+1)𝑖∈Z;

• write a symbol at the location pointed by the head; this is
represented as three different maps:

𝛼tm(write★) : (𝑠𝑖)𝑖∈Z ↦→ (𝑡𝑖)𝑖∈Z s.t.
{
𝑡0 = ∗
𝑡𝑖 = 𝑠𝑖 for 𝑖 ≠ 0 ;

• check the value read by the head; this is represented by adding
the following three (partial) maps:

𝛼tm(read★) : (𝑠𝑖)𝑖∈Z ↦→ (𝑠𝑖)𝑖∈Z if and only if 𝑠0 = ∗;

Example 3.2.2 (One-way finite automata) We can define a much sim-
pler model of computation: one-way finite automata. For this, consider
the action 𝛼fa : 𝕄(Instrfa) ↷ Xfa defined by the space of pairs (𝑠, ℎ)
consisting in a finite sequence 𝑠 of 0 and 1 (of length 𝑘) and a position
ℎ ∈ {1, . . . , 𝑘}:

Xfa =
∑
𝑘∈N
{0, 1}𝑘 × {0, 𝑘 − 1},

together with the following action:

▶ 𝛼fa(right) : (𝑠, ℎ) ↦→ (𝑠, ℎ + 1) if ℎ ≠ len(𝑠) and undefined other-
wise;

▶ 𝛼fa(read∗) : (𝑠, ℎ) ↦→ (𝑠, ℎ) if 𝑠ℎ = ∗ and undefined otherwise.

Example 3.2.3 (Two-way finite automata) We can also define two-way
finite automata. For this, consider the action 𝛼2fa : 𝕄(Instr2fa) ↷ Xfa
defined by the same space Xfa as for the one-way automata, and the
following action:

▶ 𝛼fa(right) : (𝑠, ℎ) ↦→ (𝑠, ℎ + 1) if ℎ ≠ len(𝑠) and (𝑠, ℎ) otherwise;
▶ 𝛼fa(left) : (𝑠, ℎ) ↦→ (𝑠, ℎ − 1) if ℎ ≠ 1 and (𝑠, ℎ) otherwise;
▶ 𝛼fa(read∗) : (𝑠, ℎ) ↦→ (𝑠, ℎ) if 𝑠ℎ = ∗ and undefined otherwise.

Example 3.2.4 (Pushdown automata) As an example of stack machine,
we consider two-way automata with a pushdown stack. For this, consider
the action 𝛼2fa+s : 𝕄(Instr2fa+s)↷ X2fa+s defined by the space

X2fa+s = Xfa ×
(∑
𝑘∈N
{0, 1}𝑘

)
,
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and the following action:

▶ 𝛼2fa+s(right) : (𝑠, ℎ, 𝑝) ↦→ (𝑠, ℎ + 1, 𝑝) if ℎ ≠ len(𝑠) and (𝑠, ℎ, 𝑝)
otherwise;

▶ 𝛼2fa+s(left) : (𝑠, ℎ, 𝑝) ↦→ (𝑠, ℎ − 1, 𝑝) if ℎ ≠ 1 and (𝑠, ℎ, 𝑝) other-
wise;

▶ 𝛼2fa+s(read★) : (𝑠, ℎ, 𝑝) ↦→ (𝑠, ℎ, 𝑝) if and only if 𝑝 = ∗ · 𝑝̄ (∗ ∈
{0, 1});

▶ 𝛼2fa+s(pop) : (𝑠, ℎ, 𝑝) ↦→ (𝑠, ℎ, 𝑝̄) if 𝑝 = 𝑎 · 𝑝̄;
▶ 𝛼2fa+s(push∗) : (𝑠, ℎ, 𝑝) ↦→ (𝑠, ℎ, ∗ · 𝑝) (∗ ∈ {0, 1});

Example 3.2.5 (Multiple stack automata) We now extend the previ-
ous example with additional stacks. I.e. we consider the amc 𝛼stack[𝑘] :
𝕄(Instrstack[𝑘])↷ Xstack[𝑘] defined by:

Xstack[𝑘] = Xfa ×
(∑
𝑘∈N
{0, 1}𝑘

) 𝑘
,

and the following action:

▶ 𝛼stack[𝑘](right) : (𝑠, ℎ, 𝑝1 , . . . , 𝑝𝑘) ↦→ (𝑠, ℎ + 1, 𝑝1 , . . . , 𝑝𝑘) if ℎ ≠

len(𝑠) and (𝑠, ℎ, 𝑝1 , . . . , 𝑝𝑘) otherwise;
▶ 𝛼stack[𝑘](left) : (𝑠, ℎ, 𝑝1 , . . . , 𝑝𝑘) ↦→ (𝑠, ℎ − 1, 𝑝1 , . . . , 𝑝𝑘) if ℎ ≠ 1

and (𝑠, ℎ, 𝑝) otherwise;
▶ 𝛼stack[𝑘](readℓ∗) : (𝑠, ℎ, 𝑝1 , . . . , 𝑝𝑘) ↦→ (𝑠, ℎ, 𝑝1 , . . . , 𝑝𝑘) if and only

if 𝑝ℓ = ∗ · 𝑝̄ (∗ ∈ {0, 1});
▶ 𝛼stack[𝑘](popℓ ) : (𝑠, ℎ, 𝑝1 , . . . , 𝑝𝑘) ↦→ (𝑠, ℎ, 𝑝̄1 , . . . , 𝑝̄𝑘) where 𝑝̄𝑖 =
𝑝̃𝑖 if 𝑖 = ℓ and 𝑝𝑖 = 𝑎 · 𝑝̃𝑖 , and 𝑝̄𝑖 = 𝑝𝑖 otherwise;

▶ 𝛼stack[𝑘](pushℓ∗) : (𝑠, ℎ, 𝑝1 , . . . , 𝑝𝑘) ↦→ (𝑠, ℎ, 𝑝̄1 , . . . , 𝑝̄𝑘) where 𝑝̄𝑖 =
∗ · 𝑝𝑖 if 𝑖 = ℓ and 𝑝̄𝑖 = 𝑝𝑖 otherwise (∗ ∈ {0, 1});

Circuits and parallel random access machines (prams) can be represented
as abstract models of computation. We do not describe how here, but
chapter 8 details on the representation of algebraic circuits and algebraic
prams which can easily be adapted for the boolean versions.

Algebraic models

As a first example of a model of computation of a more algebraic nature,
we will represent BSS models. These abstract models of computation
introduced by Blum, Smale and Shub are very close to Turing machines
and parametrised by the choice of an algebraic structure (in practice
an ordered field or ring, but in theory weaker structures could be
considered) whose elements can be stored and accessed in the same
way bits are accessed in Turing machines, and basic operations of the
algebraic structure are available as instructions.

It is an interesting example on a conceptual level. This exemplifies that an
abstract model of computation is just that: abstract. Whether this model is
reasonable or realistic is not considered here. In fact, it is the point of view
of the approach that any model could be both realistic and unrealistic
because the question implicitly assumes the existence of a cost model
(section 5.4 and section 5.5). Cost models will be introduced later and
will be used to define computational complexity in an abstract manner.
But a given model, say the BSS model on the rational numbers, could be
endowed with both an unrealistic cost model or a realistic one.
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Example 3.2.6 (BSS machine) We here base our definition on the original
Blum, Smale and Shub paper [69]. We fix an ordered ring or field [69]: Blum et al. (1988), On a Theory of

Computation over the Real Numbers; NP
Completeness, Recursive Functions and Uni-
versal Machines (Extended Abstract)

𝔸 = (𝐴,+,×, . . . ). We define the BSS model over 𝔸 as the amc 𝛼bss[𝔸] :
𝕄(Instrbss[𝔸])↷ Xbss[𝔸], where:

Xbss[𝔸] = 𝐴Z
0 = { 𝑓 : Z→ 𝐴 | Card({𝑖 ∈ Z | 𝑓 (𝑖) ≠ 0}) < ∞}

and the monoid action is induced by:

▶ 𝛼bss[𝔸](op
®𝑖;𝑗
★ ) : 𝑓 ↦→ 𝑓 : Z → 𝐴, 𝑓 (𝑗) = ★( 𝑓 (𝑖1), . . . , 𝑓 (𝑖𝑘)) and

𝑓 (𝑖) = 𝑓 (𝑖) when 𝑖 ≠ 𝑗, where ★ is a polynomial map (or rational
map in case 𝔸 is a field) of arity 𝑘, ®𝑖 ∈ Z𝑘 , and 𝑗 ∈ Z;

▶ 𝛼bss[𝔸](test𝑖≤0) : 𝑓 ↦→ 𝑓 if and only if 𝑓𝑖 ≤ 0;
▶ 𝛼bss[𝔸](test𝑖≥0) : 𝑓 ↦→ 𝑓 if and only if 𝑓𝑖 ≥ 0.

We will now give a more general definition of algebraic machines which will
be equivalent to the definition above when it comes to computability. The
main difference is that while more complex operations are allowed in one
step here, we will only allow atomic operations to be performed in our
modified version. It should be clear to the reader that any polynomial or
rational map can be computed in several steps using the basic operations
of the ring (or field), showing intuitively that the models are equivalent.

Example 3.2.7 (algebraic machines) Consider now an algebraic structure

𝔸 = (𝐴, op1 , . . . , op𝑚 , rel1 , . . . , rel𝑛 , c1 , . . . , c𝑙),

where op𝑖 are operations – functions of a fixed arity 𝑎𝑖 –, and rel𝑖 are
relations – subsets of 𝐴𝑘𝑖 for a fixed integer 𝑘𝑖 , and c𝑖 are constants. We
consider here that 𝑚, 𝑛, and 𝑝 can be infinite with 𝑚 and 𝑛 at most
equal to 2Card(𝐴) and 𝑝 at most Card(𝐴); this allows for abstract models of
computation with instructions for all possible operations and relations,
and in which any constant may be introduced. We define the model of
algebraic machines over 𝔸 as the amc 𝛼alg[𝔸] : 𝕄(Instralg[𝔸]) ↷ Xalg[𝔸],
where:

Xalg[𝔸] = 𝐴Z
0 = { 𝑓 : Z→ 𝐴 | Card({𝑖 ∈ Z | 𝑓 (𝑖) ≠ 0}) < ∞}

and the monoid action is induced by:

▶ 𝛼alg[𝔸](right) : 𝑓 ↦→ 𝑓 : Z→ 𝐴, 𝑓 (𝑖) = 𝑓 (𝑖 + 1);
▶ 𝛼alg[𝔸](left) : 𝑓 ↦→ 𝑓 : Z→ 𝐴, 𝑓 (𝑖) = 𝑓 (𝑖 − 1);
▶ for all 𝑖 = 1, . . . , 𝑙, 𝛼bss[𝔸](constci) : 𝑓 ↦→ 𝑓 where 𝑓 (0) = 𝑐𝑖 and
𝑓 (𝑝) = 𝑓 (𝑝) for 𝑝 ≠ 0;

▶ for all 𝑖 = 1, . . . , 𝑚, 𝛼alg[𝔸](opi) : 𝑓 ↦→ 𝑓 : Z → 𝐴, 𝑓 (0) =

op𝑖( 𝑓 (0), . . . , 𝑓 (𝑎𝑖 − 1)) and 𝑓 (𝑖) = 𝑓 (𝑖)when 𝑖 ≠ 0;
▶ for all 𝑖 = 1, . . . , 𝑛, 𝛼alg[𝔸](reli1) : 𝑓 ↦→ 𝑓 defined if and only if

rel𝑖( 𝑓 (0), . . . , 𝑓 (𝑘𝑖 − 1));
▶ 𝛼alg[𝔸](copy) : 𝑓 ↦→ 𝑓 where 𝑓 (0) = 𝑓 (1) and 𝑓 (𝑝) = 𝑓 (𝑝) for
𝑝 ≠ 0.

This can be understood an ‘intuitionistic’ version of the algebraic machine.
A ‘classical’ version is defined by adding the following instruction that
allows to compute the complement of relations:

▶ for all 𝑖 = 1, . . . , 𝑛, 𝛼alg[𝔸](reli0) : 𝑓 ↦→ 𝑓 defined if and only if
¬rel𝑖( 𝑓 (0), . . . , 𝑓 (𝑘𝑖 − 1)).
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Another algebraic model is that of Iterated Matrix Multiplication. Note
that this model is parametrised by a size which represents the number of
available registers. While all polynomials are computable in this model as
soon as there are more than 3 available registers, a result of Allender and
Wang [70] shows that there exists polynomials that cannot be computed in [70]: Allender et al. (2016), On the power

of algebraic branching programs of width twothe model of 2 × 2 matrices (with the understanding that a polynomial is
computed by a sequence of matrices if it appears as the top-left coefficient
of the product). It is not complicated to see this model as a special case
of 𝛼alg[𝐴] for a well-chosen algebraic structure 𝐴.

Example 3.2.8 (Iterated matrix multiplication models) We consider a
fixed size ℓ ∈ N and a fixed ring k. Then the Iterated matrix multiplication
model is defined as the amc 𝛼imm : 𝕄(Instrimm)↷ Ximm, where:

▶ the space Ximm is the algebra Mℓ ,ℓ (k[𝑋1 , . . . , 𝑋𝑘 , . . . ) of ℓ × ℓ ma-
trices over the polynomial ring k[𝑋1 , . . . , 𝑋𝑘 , . . . ];

▶ the set of instructions is Instrimm = Mℓ ,ℓ (k1[𝑋1 , . . . , 𝑋𝑘 , . . . ]), i.e.
the set of ℓ × ℓ matrices whose coefficients are polynomials in
k[𝑋1 , . . . , 𝑋𝑘 , . . . ] of degree at most 1;

▶ the instructions in Instrimm are acting on Ximm by left multiplication.

Other examples of instances of 𝛼alg[𝐴] include quantum models of
computation. Indeed if 𝐴 = ⊕𝜔

𝑖=0C, one can consider a model in which
any unitary operator acting on a finite dimensional subspace can be
considered as an instruction. Other models based on different spaces,
such as ℓ 2(N) or equivalently 𝐿2(R,𝜆) (𝜆 being the Lebesgue measure),
can also be considered to represent models allowing to consider infinite-
dimensional spaces or continuous-variable models [71, 72]. Or one can [71]: Braunstein et al. (2005), Quantum

information with continuous variables
[72]: Weedbrook et al. (2012), Gaussian
quantum information

restrict the model to a finite set of instructions, such as the Clifford group
extended with the 𝑇 gate, to obtain a more realistic model. In cases
like this one, a notion of approximate simulation should be considered
(although it will not be detailed in this document).

Abstract State Machines

The above example of algebraic machines seems close to Gurevich’s notion
of Abstract State Machines (asm) [68], initially introduced as evolving [68]: Gurevich (2000), Sequential Abstract

State Machines capture Sequential Algo-
rithms

algebras [73]. However, while both use first order structures, abstract

[73]: Gurevich (1995), Specification and
Validation Methods

state machines rely on those to define states (i.e. the underlying space
of the amc), while we use it here to describe the set of instructions
(i.e. the monoid and its action). One consequence of this is that first
order structure in abstract state machines evolves, while in the amc just
described it remains the same throughout the computation. This does
not prevent us from defining an amc that captures Gurevich’s model of
computation.

Example 3.2.9 We define the amc 𝛼asm[𝐴,S] : 𝕄(Instrasm[𝐴,S])↷ Xasm[𝐴,S]
of abstract state machines over a domain 𝐴 and a first order signature S
as follows2. For simplicity we will identify the set Const of constants with 2: We here only define sequential abstract

state machines, but extending it with par-
allelism is straightforward (one simply
allows multiple updates to occur simul-
taneously).

0-ary functions. We write Fun(S) the set of function symbols, denoting
by ar( 𝑓 ) the arity of an element 𝑓 ∈ Fun(S). We write Rel(S) the set of
relation symbols, and denote by ar(𝑅) the arity of a relation 𝑅 ∈ Rel(S).
The space is defined as:

Xasm[𝐴,S] =

( ∏
𝑓 ∈Fun(S)

𝐴ar( 𝑓 ) → 𝐴

)
×

( ∏
𝑅∈Rel(S)

𝐴ar(𝑅) → 𝐴

)
.
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Elements of this space will be written as pairs (( 𝑓 ) 𝑓 ∈Fun(S) , ((𝑅̄)𝑅∈Rel(S))).
The set of instructions is then defined from the set of closed terms CT, i.e.
terms defined by the following grammar:

𝑐 = 𝑐 ∈ Const | 𝑓 (𝑐, . . . , 𝑐) for 𝑓 ∈ Fun(S)with ar( 𝑓 ) = 𝑛.

Given an element (( 𝑓 ), (𝑅̄)) in Xasm[𝐴,S] and a closed term 𝑐 ∈ CT, we
define 𝑐 as the element of 𝐴 defined inductively as follows:

▶ if 𝑐 ∈ Const, then 𝑐 is defined as in the pair (( 𝑓 ), (𝑅̄)) (remember
that 𝑐 is a unary function symbol, hence interpreted as a map
∗ → 𝐴, i.e. as an element of 𝐴);

▶ if 𝑐 = 𝑔(𝑐1 , . . . , 𝑐𝑛) for closed terms 𝑐1 , . . . , 𝑐𝑛 ∈ CT and a function
symbol 𝑔 ∈ Fun(S) of arity 𝑛, we define 𝑐 as the value of 𝑔̄ when
evaluated as 𝑐1 , . . . , 𝑐𝑛 , i.e. 𝑐 = 𝑔̄(𝑐1 , . . . , 𝑐𝑛).

The instructions and their actions are then defined as follows:

▶ for all 𝑡 = 𝑔(𝑐1 , . . . , 𝑐𝑛) ∈ CT and 𝑡0 ∈ CT, there exists an in-
struction update(𝑡 ← 𝑡0). It is realised by the endomorphism
𝛼asm[𝐴,S](update(𝑡 ← 𝑡0) which maps (( 𝑓 ), (𝑅̄)) to (( 𝑓 ′), (𝑅̄′))
where:

• 𝑔̄′(𝑐1 , . . . , 𝑐𝑛) = 𝑡0;
• for all 𝑅 ∈ Rel(S)we have 𝑅̄ = 𝑅̄′;
• for all 𝑓 ∈ Fun(S) different from 𝑔, we have 𝑓 = 𝑓 ′;
• for all (𝑎1 , . . . , 𝑎𝑛) ∈ 𝐴𝑛 different from (𝑐1 , . . . , 𝑐𝑛), we have
𝑔̄′(𝑎1 , . . . , 𝑎𝑛) = 𝑔̄(𝑎1 , . . . , 𝑎𝑛).

▶ for all 𝑅 ∈ Rel(S), 𝑐1 , . . . , 𝑐𝑛 ∈ CT and 𝑡0 ∈ CT, there is an
instruction test(𝑅(𝑐1 , . . . , 𝑐𝑛), 𝑡0). It is realised by the partial map
𝛼asm[𝐴,S](test(𝑅(𝑐1 , . . . , 𝑐𝑛))which maps (( 𝑓 ), (𝑅̄)) to itself if and
only if 𝑅̄(𝑐1 , . . . , 𝑐𝑛) = 𝑡0.

One can here understand the differences expressed above. In particular,
the abstract state machine model does not identify the set of possible
instructions as properly as in amcs. This implies that that the structure
of instructions, and the possible dynamics induced by abstract state
machines, do not naturally arise as mathematical object. In opposition to
this, we refer the reader to section 4.3 in which we show how possible
computations performed by machines described by an amc can be
described mathematically. This aspect stems from the fact that amc
focus on transitions/instructions rather than states and is fundamental in
the approach, especially when applying the techniques in verification
(chapter 7) and complexity (chapter 7, see also chapter 12).

Rewriting systems

Rewriting systems define in a natural way a monoid action. However, this
action does not capture exactly the model of computation defined from
rewriting systems. Let us illustrate this on an example. Lambda-calculus
considered with a specific reduction strategy defines a natural (partial)
monoid action on the space of all 𝜆-terms Λ: a given term 𝑡 is mapped
to 𝑡′ w.r.t. this action if and only if 𝑡 →𝛽 𝑡

′. However, this describes the
underlying dynamics of 𝜆-calculus. Lambda-calculus becomes a model
of computation once the notion of application is defined: this lifts the
action defined by beta-reduction to an action of Λ onto itself defined
by 𝑡 ↷ 𝑢 = 𝑣 if and only if (𝑡)𝑢 →∗𝛽 𝑣 with 𝑣 in normal form. This can
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easily lead to confusion, since it implies that terms can be considered
both as data and as programs.

Example 3.2.10 (Prefix rewriting systems) LetΣ be an alphabet and𝑅 a set
of rules, i.e. 𝑅 ⊂ Σ∗ × Σ∗. The associated term rewriting system Σ∗ → Σ∗

is defined as an amc as follows. The Space XPrefix is defined as Σ∗, the set
of instructions InstrPrefix is defined as 𝑅, and for all 𝑟 = (𝑤, 𝑤′) ∈ 𝑅, the
action 𝛼Prefix(𝑟) is defined by 𝛼Prefix(𝑟)(𝑣) = 𝑤′ · 𝑢 when 𝑣 = 𝑤 · 𝑢 and
undefined otherwise.

This example naturally leads to the consideration of more general notions
of rewriting. This leads to a fundamental question though: can a model
of computation be non-deterministic? Obviously, non-determinism is
considered in the literature, but non-determinism is involved at the level
of machines, not the model of computation itself. We note moreover that
those can be represented through advice. More precisely, it is known that
the definition of NPtime as languages decided by a non-deterministic
Turing machine with a running time bounded by a polynomial is unsat-
isfactory. Indeed, the preferred3 definition is as languages decided by 3: While both definitions are equivalent

for polynomially bounded time, the ad-
vice definition is the only one that scales
down to smaller classes, in particular be-
cause it explicitly bounds the size of the
advice.

(non-deterministic) Turing machines running in polynomial time with a
polynomial advice, i.e.4

4: We write here 𝑀(𝑥, 𝑦) ↓𝑃(|𝑥|) to ex-
press that the machine 𝑀 given (𝑥, 𝑦) as
inputs will terminate in at most 𝑃(|𝑥|)
steps.

L ∈ NPtime
⇔

∃𝑀, ∃𝑃, ∀𝑥 ∈ L, ∃𝑦 ∈ {0, 1}∗ , |𝑦| = 𝑃(|𝑥|) ∧𝑀(𝑥, 𝑦) ↓𝑃(|𝑥|) .

In a similar way, a probabilistic machine does not choose which branch
to take: this is determined by the environment. In a sense this non-
determinism differs from the non-deterministic aspects of term-rewriting
systems such as lambda-calculus in which it is not the machines that are
non-deterministic (i.e. in some way impacted by their environment) but
the instructions themselves.

The situation is somehow similar in the case of rewriting. More formally,
consider the rewriting rule 010→ 100 on words over the alphabet {0, 1}.
Now, the word 0010101 can be rewritten in two ways: 0010101→ 0100101
and 0010101→ 0011001. In fact this rewriting system is not confluent and
this choice impact the result definitively. The analysis of this example leads
to the recognition that we are in the presence of some non-deterministic
behaviour at the level of the instructions. Can the same point of view as
above be adopted here? This boils down to the question: how can one
associate an advice here? While advices can be used to chose between
a left and a right branch in a program without more information, the
same process cannot be defined here without knowledge of the whole
term (or equivalently, of all the possible redexes for applying the chosen
instruction).

To be more precise, we refuse the idea that an instruction can lead
to underspecified behaviour. If an instruction corresponds intuitively
to an idealisation of a physical process, then it cannot be purely non-
deterministic: there will always be some information from the context
that will make the operation deterministic, or some probabilistic law
governing the behaviour of the device. As such, a coin toss instruction
is not non-deterministic because it is given a specified behaviour based
on a precise probability distribution. Another example is that of race
conditions in parallel models of computation: we consider here that
the runtime information that leads to either processor 𝐴 or processor
𝐵 to be the first to write a symbol in a cell should be represented as an
advice string accounting for the environment. The complete behaviour
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of the system is then represented by an additional choice of a probability
distribution on strings.

This is somehow equivalent to introducing a notion of probabilistic
strategy.

Definition 3.2.1 Let (𝐴, 𝑅) be a rewriting system. For each 𝑎 ∈ 𝐴 and 𝑟 ∈ 𝑅,
we write redex(𝑎, 𝑟) the set of redexes in 𝑎 for the rule 𝑟. A strategy for this
rewriting system is a map 𝑆 : 𝐴 × 𝑅 → Prob(redex(𝑎, 𝑟)), i.e. a map that
associate to each term 𝑎 ∈ 𝐴 and rule 𝑟 ∈ 𝑅 a probability distribution 𝑆(𝑎,𝑟)
over the set redex(𝑎, 𝑟).
Given 𝑆, 𝑎, 𝑟, and an element 𝑢 ∈ [0, 1], we write 𝑆(𝑎, 𝑟)(𝑢) the result of
applying to 𝑎 the rule 𝑟 on the redex5 𝑆−1

(𝑎,𝑟)(𝑢). 5: Since redex(𝑎, 𝑟) is finite, we can as-
sume without loss of generality that 𝑆
maps elements of redex(𝑎, 𝑟) to (disjoint)
intervals in [0, 1]. In that case, sampling
over redex(𝑎, 𝑟) is the same as sampling
over [0, 1]. For any 𝑢 ∈ [0, 1], we then
write 𝑆−1

(𝑎,𝑟)(𝑢) the element of redex(𝑎, 𝑟)
corresponding to 𝑢.

Since the set of redexes is finite, the probability distributions are discrete,
and the choice can be imposed by the environment by the production of a
real number in the unit interval [0, 1]. We note however that this notion of
strategy contains non-computable examples. This is true for two distinct
reasons. First because it uses real numbers without restrictions on the
kind of probability distribution allowed. Second because it is simply "a
map" and not a computable one.

Definition 3.2.2 Let (𝐴, 𝑅) be a rewriting system and 𝑆 a strategy. We define
the space

X𝑅,𝑆 = Σ∗ × [0, 1]𝜔 .
The monoid action is then generated by the transformations 𝛼(𝑟) for 𝑟 ∈ 𝑅,
acting as follows:

𝛼(𝑟) : (𝑡 , 𝜌) ↦→ (𝑆−1
(𝑡 ,𝑟)(𝑢), 𝜌

′),

where 𝜌 = 𝑢 · 𝜌′ and when redex(𝑡 , 𝑟) is non-empty (the action is undefined
when it is empty).

Remark 3.2.1 We note that a different definition could be given in the
case of deterministic strategies. Consider an alphabet Σ, a set of rewriting
rules𝑅, and a deterministic reduction strategy 𝑆 for (Σ∗ , 𝑅). One can define
the following abstract model of computation. The space Xdet

𝑅,𝑆
is defined

as Σ∗, the set of instructions is defined as Instrdet
𝑅,𝑆

= 𝑅, and the action
𝛼det
𝑅,𝑆
(𝑟) for 𝑟 ∈ 𝑅 is defined as 𝛼det

𝑅,𝑆
(𝑟)(𝑥) = red(𝑥, 𝑆(𝑥, 𝑟)) (where 𝑆(𝑥, 𝑟)

denotes the unique element of redex(𝑥, 𝑟) designated by the strategy) if
redex(𝑥, 𝑟) ≠ ∅ and undefined otherwise.

This model of computation is not a specific case of the above because
Xdet
𝑅,𝑆

≠ X𝑅,𝑆. But it is in fact a retract of the one above (Definition 3.3.2)
since Xdet

𝑅,𝑆
× Y and 𝛼det

𝑅,𝑆
= 𝛼𝑅,𝑆 × 𝑠 where 𝑠 is the right shift on Y.

Remark 3.2.2 The case of a strongly normalising rewriting system is
interesting to consider. In that case, the different models obtained are
equivalent in terms of computability: whichever strategy 𝑆 is considered,
the term 𝑡 will normalise to the same unique normal form 𝑡′. However,
this equivalence is not quantitative: if one takes into account some notion
of cost – for instance the length of reduction – then normalising 𝑡 may be
much more efficient in the model corresponding to a strategy 𝑆 than in
the model built from strategy 𝑆′.

Example 3.2.11 One interesting case akin to rewriting is that of cellular
automata. Let us start with a space X𝑐.𝑎., together with a notion of
neighbourhood, i.e. for all 𝑥 ∈ X𝑐.𝑎., there exists a subspace 𝑉(𝑥) called the
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neighbourhood of 𝑥, and write 𝜋𝑥 the projection X𝑐.𝑎. → 𝑉(𝑥). Suppose
moreover that for any 𝑥, 𝑉(𝑥) is isomorphic to a generic neighbourhood
𝑉 and fix a specific isomorphism 𝜙𝑥 . For any alphabet Σ, one can define
a local-to-global Σ-automata of neighbourhood 𝑉 by providing a finite
set of rules 𝑟 : Σ𝑉 → Σ. For any element 𝑐 ∈ ΣX𝑐.𝑎. , this finite set of rules
defines a single instruction 𝐼𝑟 : ΣX𝑐.𝑎. defined by:

ΣX𝑐.𝑎. (Σ𝑉 )X𝑐.𝑎. ΣX𝑐.𝑎.
Σ𝜙𝑥◦𝜋𝑥 𝑟X𝑐.𝑎.

This defines a monoid action 𝛼c.a. from the free monoid over the set of
rules (Σ𝑉 → Σ)∗↷ ΣX𝑐.𝑎. which generalises the cellular automata model.
This will be discussed with more details in the next section where we
will analyse the corresponding set of programs (Definition 4.2).

Example 3.2.12 We now consider automata networks models. Let (𝑉, 𝐸, 𝑠, 𝑡)
be a directed (simple) graph, endowed with local update rules

𝑈 : 𝑣 ∈ 𝑉 ↦→ 𝑈(𝑣) : {0, 1}𝑠(𝑡−1(𝑣)) → {0, 1}.

The corresponding abstract model of computation is defined by X =

{0, 1}𝑉 , and the action 𝛼 is defined by the single instruction update
realised by 𝛼(update)which maps 𝜙 : 𝑣 ↦→ 𝑐 to:(

𝑣 ↦→ 𝑈(𝑣)(𝜙(𝑎1), 𝜙(𝑎2), . . . , 𝜙(𝑎𝑘))
)
,

where {𝑎1 , 𝑎2 , . . . , 𝑎𝑘} = 𝑠(𝑡−1(𝑣)).

Functional programming

In all the examples above, the monoid action is generated by a single
instruction. But some particular models are more interesting, namely
cases in which the terms themselves are not only the data but also the
programs. In order to do so, it is however needed that some constructions
on terms corresponds to applying one term to the other. In case of lambda-
calculus, this is very clearly defined as the application rule. I.e. applying
a term 𝑡 to another term 𝑢 has a dual nature: it can be understood
as constructing a new term (𝑡)𝑢, or as considering 𝑡 as a program to
which we are giving 𝑢 as argument. While these two aspects are usually
conflated, they here appears clearly separated.

Indeed, application allows one to lift the monoid action generated by
𝛽-reduction to an action of terms on themselves. More precisely: let Λ be
the set of lambda-terms, and write 𝛽 : 𝕄(𝛽)↷ Λ. The application lifts 𝛽
to an action 𝛼 : 𝕄(Λ)↷ Λ by letting 𝛼(𝑡)(𝑢) = nf((𝑡)𝑢)when the latter
exists, and 𝛼(𝑡)(𝑢) undefined otherwise. Note that in this case, one can
use the definition of 𝛽-reduction to deduce some equalities. For instance
in a leftmost reduction setting: 𝛼(((𝜆𝑥).𝑡)𝑢)(𝑣) = 𝛼(𝑡[𝑥 := 𝑢])(𝑣).
More generally, any term construction operator that allows to combine
two (or more) terms can be used to lift the action of a rewriting system to
an action of the monoid of terms.

Example 3.2.13 (Lambda-calculus) Now, lambda-calculus is an example
of a more general rewriting system. Beta-reduction together with a
reduction strategy defines an abstract model of computation in the same
way as described above, as long as one is careful about the definition
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of beta-reduction. Indeed, the full definition of 𝛽-reduction requires
𝛼-renaming of closed terms with a ‘fresh’ variable. This fresh variable
should be deterministically chosen to properly define the rewriting
system; this is however easily done by considering a total order on
variables and choosing the smallest variable that does not appear in the
term. I.e. one needs to determine exactly the substitution.

This can be done as follows. We fix a total order on the variable names:
we will write those as 𝑥1 , 𝑥2 , . . . . We then define inductively 𝑡[𝑥𝑖 := 𝑠]
as:

▶ 𝑠 if 𝑡 = 𝑥𝑖 ;
▶ 𝑥 𝑗 if 𝑡 = 𝑥 𝑗 ≠ 𝑥𝑖 ;
▶ (𝑢[𝑥𝑖 := 𝑠])𝑣[𝑥𝑖 := 𝑠] if 𝑡 = (𝑢)𝑣;
▶ 𝜆𝑥𝑖 .𝑢 when 𝑡 = 𝜆𝑥𝑖 .𝑢;
▶ 𝜆𝑥 𝑗 .𝑢[𝑥𝑖 := 𝑠]when 𝑡 = 𝜆𝑥 𝑗 .𝑢 with 𝑥 𝑗 ≠ 𝑥𝑖 and 𝑥 𝑗 ∉ FreeVar(𝑢);
▶ 𝜆𝑥𝑛 .(𝑢[𝑥 𝑗 := 𝑥𝑛])[𝑥𝑖 := 𝑠] when 𝑡 = 𝜆𝑥 𝑗 .𝑢 with 𝑥 𝑗 ≠ 𝑥𝑖 and
𝑥 𝑗 ∈ FreeVar(𝑢), where 𝑥𝑛 is the smallest variable such that 𝑥𝑛 ∉

Variables(𝑢) ∪ Variables(𝑠);
This definition can be used to define a map on lambda-terms→𝛽,𝑆: Λ→
Λ for each reduction strategy 𝑆 that determine which redex should be
reduced at each step. The induced dynamical system can then be lifted,
through application, to an action of6 Λ onto itself: 6: We in fact get an action of Λ∗, the free

monoid over Λ, similarly to the case of
cellular automata (Example 3.2.11). This
is discussed later but mainly implies that
lambda-calculus is represented by state-
less programs (Definition 4.2.4).

Λ ↷ Λ : 𝑡 ↦→ 𝑢 ↦→ nf((𝑡)𝑢).

This defines an amc 𝛼𝜆(𝑆) : Λ∗↷ Λ.

Obviously, abstract machines can also used to define abstract models
of computation. We here only detail the construction for the Krivine
abstract machine [74], but other machines – such as the SECD [75, 76] – [74]: Krivine (2007), A call-by-name

lambda-calculus machinelead to the definition of an amc in a similar manner.

Example 3.2.14 Recall the mutually recursive definitions of closures 𝑐 ∈ C
and environments 𝑒 ∈ 𝐸:

𝑐 := (𝑡 , 𝑒) 𝑒 := 𝜖 | [𝑥 ← 𝑐] :: 𝑒

We also recall the definition of stacks 𝜋 ∈ S :

𝜋 := 𝛼 | 𝑐 · 𝜋.

The states 𝑠 := (𝑐,𝜋) of the Krivine Abstract Machine are made of a
closure 𝑐 ∈ C and a stack 𝜋 ∈ S . We will write states as 𝑠 := (𝑡 , 𝑒)★𝜋 to
specify the components of the closure. Transitions of the machine are
defined as:

((𝑡)𝑢, 𝑒)★𝜋→ (𝑡 , 𝑒)★ (𝑢, 𝑒) · 𝜋
(𝜆𝑥.𝑡, 𝑒)★ 𝑐 · 𝜋→ (𝑡 , [𝑥 ← 𝑐] · 𝑒)★𝜋

(𝑥, 𝑒)★𝜋→ (𝑡 , 𝑒′)★𝜋 if 𝑒 contains [𝑥 ← (𝑡 , 𝑒′)]

We thus choose the space

Xkam = {(𝑡 , 𝑒)★𝜋 | (𝑡 , 𝑒) ∈ C ,𝜋 ∈ S}.

This is equipped with the action of a single partially-defined map→
defined by the above equations (note they are partially defined on disjoint
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domains). This can be extended with a partially defined map isNF acting
as a partial identity on the subspace of terms for which→ is not defined.

This can then be used to define the orbit representing the computation of
a 𝜆-term: a term 𝑡 and a closure 𝑐 give rise to the orbit starting at 𝑡 ★𝜋.

This example of the Krivine abstract machine naturally leads to the
definition of an amc corresponding to the processes used as the underlying
model of computation of Krivine’s classical realisability [77, 78]. In view of [77]: Krivine (2001), Typed lambda-calculus

in classical Zermelo-Fraenkel set theory
[78]: Krivine (2009), Realizability in classi-
cal logic

the linear realisability models presented later, this example is particularly
interesting and could lead (though not in this document) to a better
understanding of the relationship between classical and linear realisability
constructions.

Example 3.2.15 We co-inductively define the spaces of stacks Π and the
set Λ of 𝜆-terms containing stack constants:

(Λ) 𝑡 := 𝑥 | 𝑘𝜋 | (𝑡)𝑡 | 𝜆𝑥.𝑡 (𝑥 ∈ Var,𝜋 ∈ Π, c ∈ 𝐶)
(Π) 𝜋 := 𝛼 | 𝑡 · 𝜋 (𝑡 ∈ Λ, 𝛼 ∈ B)

where Var andB are countably infinite sets of variables and stack constants
respectively and 𝐶 is a set of instructions containing cc.

One can then form the space of processes:

Xkr = Λ ×Π,

whose elements are written as 𝑡 ★𝜋 for 𝑡 ∈ Λ and 𝜋 ∈ Π.

The four basic reduction rules considered by Krivine are the following:

(push) (𝑡)𝑢 ★𝜋 ≻ 𝑡 ★ 𝑢 · 𝜋
(grab) (𝜆𝑥.𝑡)★ 𝑢 · 𝜋 ≻ 𝑡[𝑥 := 𝑢]★𝜋

(save) cc★ 𝑡 · 𝜋 ≻ 𝑡 ★ 𝑘𝜋 · 𝜋
(restore) 𝑘𝜋 ★ 𝑡 · 𝜋′ ≻ 𝑡 ★𝜋

They can be extended with rules governing the reduction of additional
instructions in the chosen set 𝐶.

These rules define partial maps with disjoint domains, and therefore
combine in a single (partial) map 𝛼kr(≻) acting on Xkr. In a similar way
as before, this can be extended with a partial identity map isNFwhose
domain of definition is the set of all processes for which none of the rules
above can be applied.

This lifts to an action of Λ onto Xkr which associates to each 𝑡 ∈ Λ and
(𝑢, 𝑒)★𝜋 ∈ Xkr the orbit of ((𝑡)𝑢, 𝑒)★𝜋.

Neural networks

We will here explain how to represent the set of neural networks and
the training process. We will however need to use notions which will
only be introduced in the next chapter, i.e. the notion of program. Indeed,
the space of configuration of the training algorithm should be defined
as the set of programs in an underlying model, turning the program
(usually called model in the learning community) into a possible state of
the system. For simplicity, we will consider feedforward networks only.
We will also consider the size of all layers to be equal to a fixed integer:
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this is not a restriction of the model since the model allows for networks
using only part of a layer.

Example 3.2.16 The first level of the architecture is that of neural networks
as a model of computation. I.e. we fix an integer 𝑘 that represents the
maximum size of the layers in the models, and the space considered is

X0(𝑘) = C𝑘

Instructions are given by matrices of the right size, i.e. 𝑘 × 𝑘 matrices.
These matrices describe the weights of edges between two consecutive
layers (or hyperparameters). We will not discuss here the possible choices
of threshold functions and consider this choice fixed as part of the model.
Based on this choice and a matrix, it is possible to propagate the value of
a vector from one layer to the next: given a vector ®𝑣 ∈ X0(𝑘) and a matrix
𝑀 ∈M𝑘(C), we can compute the value7 {𝑀}(®𝑣). 7: Notice the notation which is meant

to stress that the computation is not in
general the simple application of 𝑀 to
the vector ®𝑣.

Now, anticipating on the next section, an abstract program for this model
of computation is a general (recurrent) network. But one can consider
only feedforward networks by restricting the control structure to partial
orders (or even total orders); we will write ffN the set of such abstract
programs (for feedforward networks).

The process of training is then represented as an abstract model of
computation built on the space ffN. More precisely, we consider the
space:

ffN × (C𝑘 × C𝑘)|𝜔| ,
where the space (C𝑘 × C𝑘)𝜔 represents finite sequences of pairs con-
sisting of an input vector (first element of the pair) and an expected
outcome (second element of the pair). This model is then defined, in
the simplest cases, by considering a single instruction update which
takes an elements 𝑃 ∈ ffN and a pair (𝑖 , 𝑜) ∈ C𝑘 × C𝑘 and produces
update(𝑃, (𝑖 , 𝑜)) (usually by performing back-propagation, i.e. one eval-
uates the output 𝑃{𝑖} and propagates the error 𝑃{𝑖} − 𝑜 in the program
to update the hyperparameters). The action is thus generated by the
following endomorphism:

𝛼(train)(𝑃, s) = (update(𝑃, (𝑖 , 𝑜)), s′) if s = (𝑖 , 𝑜) · s′.

Computer architectures

Up to this point, all models considered are taken from theory. While
Turing machines play a fundamental role in computer science, it is still a
much theoretical device with important differences from actual computer
architectures. To argue that our mathematical definition of model of
computation does not only apply to abstract models, we now provide
two examples of more realistic models of computation. To do so, we will
show how to represent two instruction set architectures. For simplicity,
and for its historical importance, the first example will be that of the
EDSAC (Electronic Delay Storage Automatic Calculator) instruction set
(Example 3.2.17). We will then sketch the interpretation of a more up-
to-date example: the ARMv8-A instruction set, chosen because it is the
instruction set employed on the CPU of the computer that was used to
write this document. We will later discuss how those can be compared to
the more theoretical models introduced above, and how these models
can be of interest for more refined complexity analysis8 (chapter 13). 8: For instance introducing cost models

distinguishing access costs for different
level of caches, or speculation mecha-
nisms.
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Figure 3.2.: EDSAC order code [79]

© University of Cambridge

Example 3.2.17 (EDSAC) The description below is based on the paper by
Wilkes and Renwick [79] describing the EDSAC and the documentation

[79]: Wilkes et al. (1950), The EDSAC (Elec-
tronic delay storage automatic calculator)

[80], and archives [81] of the EDSAC Replica project 9

[80]: project (n.d.), Tutorial Guide to the
EDSAC Simulator
[81]: authors (1948), The EDSAC: general
description
9: https://www.tnmoc.org/edsac,

The EDSAC possessed 1024 locations, each containing 18 bits of which the
first was unusable. It allowed for double words of 35 bits by combining
two adjacent storage locations. Each size of data (either 17 or 35 bits)
could either represent a signed integer or a signed fraction10. Short tanks

10: Approximations of real numbers
were represented as elements of [−1, 1].

containing only one number were used as accumulator and multiplier
registers in the arithmetical unit, and for control purposes. The accumula-
tor could hold 71 bits to perform exact multiplications. It also contained a
sequence control register (program counter) of 10 bits, an order tank (only
representing the current order) of 17 bits. The programs were provided
to the machine as lists of lines consisting of 5 bits; similarly, the output
was composed of lines of 5 bits.

The instructions were represented by 17 bits codes: 5 first bits coding the
letter of the instruction, followed by one spare bit, followed by ten bits
representing a memory address, and finally a bit indicating whether the
instruction should operate on a word or a double word.

The space of configuration is therefore the following:

Xedsac = ({0, 1}5)𝜔×({0, 1}17)1024×{0, 1}71×{0, 1}10×{0, 1}35×({0, 1}5)𝜔 ,

where {0, 1}35 represents the accumulator and {0, 1}71 represents the
multiplier. Elements of Xedsac will be represented as tuples

(I,Mem, pc,Acc,mul,O),

https://www.tnmoc.org/edsac
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where pc represents the program counter, Acc the accumulator, mul the
multiplicand, Mem the main memory, and I and O account for the input
and output.

Now, the EDSAC had 17 instructions, shown in Figure 3.2, each repre-
sented as a single letter. We will consider the following conventions:

▶ all operations are performed on the 35 bits memory and in case
of overflow the computation continues with the contents of the
registers without giving notice,

▶ the operation ∧ denotes the bitwise conjonction of two strings,
▶ the operations ×2−𝑛 and ×2𝑛 represent respectively right and left

shift of 𝑛 bits,
▶ the operations+235 and+217 represent the addition of 1 to rounding

to 34 and 16 digits,
▶ the sequence I>0 is the sequence obtained from 𝐼 by removing the

first element,
▶ · denotes the concatenation of an element to the head of a list or

the concatenation of two sequences of bits.

We can represent the instructions as the following actions11, which we 11: We here only represent the case of
instructions used on words, the case of
double words is obtained as a straight-
forward adaptation of those.

express here on the input x = (I,Mem, pc,Acc,mul,O):

𝛼edsac(A 𝑛) :x ↦→ (I,Mem, pc + 1,Acc +Mem[𝑛],mul,O)
𝛼edsac(S 𝑛) :x ↦→ (I,Mem, pc + 1,Acc −Mem[𝑛],mul,O)
𝛼edsac(H 𝑛) :x ↦→ (I,Mem, pc + 1,Acc,Mem[𝑛],O)
𝛼edsac(V 𝑛) :x ↦→ (I,Mem, pc + 1,Acc +mul ×Mem[𝑛],mul,O)
𝛼edsac(N 𝑛) :x ↦→ (I,Mem, pc + 1,Acc −mul ×Mem[𝑛],mul,O)
𝛼edsac(T 𝑛) :x ↦→ (I,Mem[𝑛 := Acc], pc + 1, 0,mul,O)
𝛼edsac(U 𝑛) :x ↦→ (I,Mem[𝑛 := Acc], pc + 1,Acc,mul,O)
𝛼edsac(C 𝑛) :x ↦→ (I,Mem, pc + 1,mul ∧Mem[𝑛],mul,O)
𝛼edsac(R 𝑛) :x ↦→ (I,Mem, pc + 1,Acc × 2−𝑛 ,mul,O)
𝛼edsac(L 𝑛) :x ↦→ (I,Mem, pc + 1,Acc × 2𝑛 ,mul,O)

𝛼edsac(E 𝑛) : x ↦→ (I,Mem, 𝑛,Acc,mul,O) if Acc ≥ 0
x ↦→ (I,Mem, pc + 1,Acc,mul,O) otherwise

𝛼edsac(G 𝑛) : x ↦→ (I,Mem, 𝑛,Acc,mul,O) if Acc ≤ 0
x ↦→ (I,Mem, pc + 1,Acc,mul,O) otherwise

𝛼edsac(I 𝑛) :x ↦→ (I>0 ,Mem[𝑛 := 012 · I[0]], pc + 1,Acc,mul,O)
𝛼edsac(O 𝑛) :x ↦→ (I,Mem, pc + 1,Acc,mul,Mem[𝑛]//212 · O)
𝛼edsac(F 𝑛) :x ↦→ (I,Mem[𝑛 := O[0]], pc + 1,Acc,mul,O)
𝛼edsac(Z 1) :x ↦→ (I,Mem, pc + 1,Acc + 235 ,mul, 𝜇)
𝛼edsac(Z 2) :x ↦→ (I,Mem, pc + 1,Acc + 217 ,mul, 𝜇).

Note that one aspect of the EDSAC is that self-modifying code was not
only tolerated but useful. The dynamics of an execution are given by the
following. From a given configuration x, the machine moves the contents
of Mem[pc] into the order tank for it to be executed in the next step, then
it proceeds to execute the instruction it represents. I.e. the dynamics are
given by:

x ↦→ 𝛼edsac(Mem[pc])(x),
with initial configuration12 (I,Mem, 0,Acc,mul, ∅). 12: We suppose here that a computation

starts with possible non-zero values in
the main memory, accumulator, and mul-
tiplier.
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Example 3.2.18 (ARMv8-A) We now discuss how to represent the ARMv8-
A instruction set. We will not provide all details because it would take
at least a hundred pages to write it down, but we will provide enough
elements to convince writing down the full interpretation is possible
in theory. The information below is mostly taken from the ARMv8-A
documentation 13. 13: https://developer.arm.com/

documentation/ddi0487/latest/
To do so, we first provide some information on the corresponding
architecture. The instruction set allows for 32 all-purpose 64 bits registers
with the first register always set to zero, and 32 floating point 128 bit
registers. These will be represented as APR = {064} × ({0, 1}64)31 and
FPR = ({0, 1}128)32 respectively. In addition, there is a Program Counter
represented as PC = {0, 1}32, System Registers14 represented as SR.On 14: System registers will not be detailed

here; documentation lists 276 AArch32
system registers, 561 AArch64 system
registers, and 540 external registers.

top of this, the machine has access to the main memory. We can consider
two version: the idealised version in which the memory is unbounded,
and a more realistic, limited, memory of, say, 16Go memory. Those will be
represented as Mem∞ = {0, 1}𝜔 and Mem16Go = {0, 1}2𝑒37 respectively.

Now, considering the space15 15: This does not account for possible
simplifications based on the fact that
the first register is never modified (and
always equal to 0), and the program
counter is usually part of the 32 registers.

ARM = APR × FPR × PC × SR ×Mem𝜅

one can define the actions corresponding the instructions allowed by the
instruction set architecture (isa). Detailing this would be a tedious task:
the instruction set comprises16 472 base instructions, 425 floating point 16: If I counted correctly. These numbers

also include multiplie variations of the
same instruction.

instructions, 921 SVE instructions, and 310 SME instructions. However it
should be clear to the reader that, if considered with enough care, each
instruction gives rise to an endomorphism of ARM, and that the collection
of all these endomorphisms generates a monoid action modelling the isa.

In fact, this model is but a rough approximation of how an actual
processor works. To be more precise, one should take into account at the
very least the architecture of cache memories and their exclusion policy,
as well as model the prediction mechanism. Providing a more realistic
model of computation allowing to obtain results in algorithmics and
complexity which are coherent with current architectures is one of my
projects for the years to come. This will be discussed in chapter 13.

A more tractable example to be considered in the future is that of RISC-V.
Restricting to the base instructions should remain tractable (there are 47
such instructions).

Analog computers

One other interesting example is the General Purpose Analog Computer
(GPAC) model. While it is sometimes considered as a continuous time
model of computation, it can still be described abstractly as an amc. In-
deed, it can be seen as a circuit composed of basic instructions performing
operations on maps R→ R. This does not imply that the GPAC does not
possess continuous-time aspects, but those appear in stabilisation time,
etc. In essence, the model of computation still is discrete in that each in-
struction is applied or not, differing from models in which an instructions
could be applied for a (real) variable amount of time. As a consequence,
we still see the GPAC as a discrete-time model of computation acting on
a continuous space.

Example 3.2.19 The general purpose analog computer was introduced
by Shannon [82] as a mathematical model of analog computers. While [82]: Shannon (1941), Mathematical Theory

of the Differential Analyzer

https://developer.arm.com/documentation/ddi0487/latest/
https://developer.arm.com/documentation/ddi0487/latest/
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presented as a continuous-time model, it is in fact described by circuits,
and can be modelled by a monoid action. We let the space of configura-
tions be X = C∞(R,R)𝜔, i.e. a countable product of the space of smooth
functions over the reals. The product will be used to manipulate multiple
inputs, i.e. they act as registers. Basic units of the GPAC model are: the
constant unit, introducing the constant function equal to some value 𝑘,
adder and multiplier units, and an integrator unit. We therefore consider
the following generating set of instructions:

▶ const𝑖0(𝑘) : X𝜔 → X𝜔 , ( 𝑓𝑖) ↦→ (𝑔𝑖) where 𝑔𝑖0 = 𝑘 and 𝑔𝑖 = 𝑓𝑖 if
𝑖 ≠ 𝑖0;

▶ add𝑖0(𝑗1 , 𝑗2) : X𝜔 → X𝜔 , ( 𝑓𝑖) ↦→ (𝑔𝑖)where 𝑔𝑖0 = 𝑓𝑗1+ 𝑓𝑗2 and 𝑔𝑖 = 𝑓𝑖
if 𝑖 ≠ 𝑖0;

▶ mult𝑖0(𝑗1 , 𝑗2) : X𝜔 → X𝜔 , ( 𝑓𝑖) ↦→ (𝑔𝑖) where 𝑔𝑖0 = 𝑓𝑗1 × 𝑓𝑗2 and
𝑔𝑖 = 𝑓𝑖 if 𝑖 ≠ 𝑖0;

▶ int𝑖0(𝑗1 , 𝑗2) : X𝜔 → X𝜔 , ( 𝑓𝑖) ↦→ (𝑔𝑖) where 𝑔𝑖0 =
∫
𝑓𝑗1𝑑𝑓𝑗2 and

𝑔𝑖 = 𝑓𝑖 if 𝑖 ≠ 𝑖0.

It is then possible to represent GPAC machines as graphings w.r.t. this
action.

Remark 3.2.3 The discussion above however raises the question of how
one could represent non-discrete instructions. One natural generalisation
of amc would consider the replacement of monoid actions by operator
semi-groups [83]. We however will not consider this extension here. [83]: Davies (1980), One-parameter Semi-

groups

3.3. Computational equivalences

We will now define a few notions of equivalences of amc, provide
examples of such, and prove some properties. The strongest equivalence
is the notion of isomorphism. It will become clearer as we investigate
further the notions of equivalence that the core notion is rather that of
simulation. Indeed, the most important results concern the simulation
(either computational – Definition 3.3.3, or program-wise simulations –
Definition 4.4.2 and Definition 4.4.5) of an amc by another. Equivalences,
defined as two-way simulations, is usually a less natural notion.

Isomorphisms and retraction: equivalences of
presentations

Definition 3.3.1 (Isomorphism) Two models of computation 𝛼 : 𝕄(𝐼)↷ X
and 𝛽 : 𝕄(𝐽) ↷ Y are isomorphic, written 𝛼 � 𝛽, when there exists a
isomorphism 𝜑 : X → Y and a bĳection 𝜃 : 𝐼 → 𝐽 such that 𝜑 ◦ 𝛼(𝑖) =
𝛽(𝜃(𝑖)) ◦ 𝜑.

This notion of equivalence is particularly strong, and somehow captures
modifications in some of the parameters and conventions in the definition
of the machine model. For instance, the following model is equivalent to
the amc 𝛼tm of Turing machines.

Example 3.3.1 (Definition of Turing machines over {−1, 1}) Define the
𝛼tm(Z2) : 𝕄(Instrtm)↷ Xtm(Z2) by:

Xtm(Z2) = {−1, 1, 0}Z0 ,
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that is bi-infinite sequences of −1, 1, and 0, which are almost always
equal to 0. The action is defined as:

▶ 𝛼tm(Z2)(right) : (𝑠𝑖)𝑖∈Z ↦→ (𝑠𝑖+1)𝑖∈Z;
▶ 𝛼tm(Z2)(left) : (𝑠𝑖)𝑖∈Z ↦→ (𝑠𝑖−1)𝑖∈Z;
▶ 𝛼tm(Z2)(write★) : (𝑠𝑖)𝑖∈Z ↦→ (𝑠𝑖)𝑖∈Z where 𝑠0 = ∗ and 𝑠𝑖 = 𝑠𝑖 when
𝑖 ≠ 0;

▶ 𝛼tm(Z2)(read★) : (𝑠𝑖)𝑖∈Z ↦→ (𝑠𝑖)𝑖∈Z when 𝑠0 = ∗ and undefined
otherwise.

Weakening conditions on the space. Note that this is the strongest
possible equivalence: the underlying spaces are isomorphic, and the
actions of the sets of instructions (which generate the monoid action) are
conjugate. It is therefore in some sense a strengthening of the notion of
conjugate actions (this will be formalised below). This definition can be
weakened along two, quite orthogonal, dimensions. The first is to allow
for a less constrained mapping of instructions: an instruction in 𝐼 could
be mapped to an element of 𝕄(𝐽) instead of an element of 𝐽. This leads
to the notion of simulation and equivalence defined below. The second
dimension is that of the space. We will start by discussing this, with an
example.

Example 3.3.2 One example is the following alternative definition of an
amc 𝛼̃tm of Turing machines. Consider the space X̃tm = Xtm × Z where
the second component represents the position of the head on the tape.
The action is here induced by:

▶ 𝛼̃tm(right) : ((𝑠𝑖)𝑖∈Z , ℎ) ↦→ ((𝑠𝑖)𝑖∈Z , ℎ + 1);
▶ 𝛼̃tm(left) : ((𝑠𝑖)𝑖∈Z , ℎ) ↦→ ((𝑠𝑖)𝑖∈Z , ℎ − 1);
▶ 𝛼̃tm(write★) : ((𝑠𝑖)𝑖∈Z , ℎ) ↦→ ((𝑠𝑖)𝑖∈Z , ℎ) where 𝑠ℎ = ★ and 𝑠𝑖 = 𝑠𝑖

when 𝑖 ≠ ℎ;
▶ 𝛼̃tm(read★) : ((𝑠𝑖)𝑖∈Z , ℎ) ↦→ ((𝑠𝑖)𝑖∈Z , ℎ)when 𝑠ℎ = ★ and undefined

otherwise.

We will now compare 𝛼̃tm with 𝛼tm. Intuitively, configurations in 𝛼̃tm are
redondant: writing 𝜎 the usual left shift on Xtm, we can understand the
two configurations ((𝑠𝑖)𝑖∈Z , ℎ) and (𝜎((𝑠𝑖)𝑖∈Z), ℎ − 1) as representing the
same situation: the contents of the tape are the same up to a shift, and
the tape head points to the same position – up to the same shift. This is
captured by the fact that the action of each instruction is invariant w.r.t.
conjugation by 𝜏. More formally:

𝛼̃tm(right) = 𝜏−1 ◦ 𝛼̃tm(right) ◦ 𝜏
𝛼̃tm(left) = 𝜏−1 ◦ 𝛼̃tm(left) ◦ 𝜏

𝛼̃tm(write★) = 𝜏−1 ◦ 𝛼̃tm(write★) ◦ 𝜏
𝛼̃tm(read★) = 𝜏−1 ◦ 𝛼̃tm(read★) ◦ 𝜏

The amc 𝛼̃tm is therefore an equivariant system w.r.t. the action of Z by
𝑘 ↦→ 𝜎𝑘 , and the amc 𝛼tm can be identified with the quotient of 𝛼̃tm by
this action.

Definition 3.3.2 Consider two models of computation 𝛼 : 𝕄(𝐼) ↷ X and
𝛽 : 𝕄(𝐽) ↷ Y. We say that 𝛼 is a retract of 𝛽 when there exists X̃ and a
bĳection 𝑢 : X̃→ X̃ such that 𝛼 × 𝑢 ↷ X × X̃ and 𝛽 are isomorphic.

Theorem 3.3.1 The amc 𝛼tm is a retract of 𝛼̃tm.
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Proof. The proof is quite easy: a simple projection of X̃tm into Xtm works
out with the map sending each instruction in the first model to the same
instruction in the second model. This embedding is defined as:

((𝑠𝑖)𝑖∈Z , ℎ) ↦→ (𝑠𝑖−ℎ).

It is then easy to show that for each (s, ℎ) ∈ X̃tm and all instruction 𝑖:

𝛼̃tm(𝑖)(s, ℎ) = (𝛼tm(𝑖)(s), ℎ),

which shows the result. R

We note that while 𝛼stack[2] is close to being a retract of 𝛼tm, it is not.
The reason for this is that on the tape of a Turing machine, there could
be several strings in {0, 1}∗ separated by blank symbols. Similarly, the
amc 𝛼fa is close to being a retract of 𝛼tm restricted to the instructions
{read★, read0 , read1 , right}, but it is not for similar reasons.

As a second example, we have the two distinct amcs defined from a
rewriting system equipped by a deterministic strategy, as discussed in
Remark 3.2.1.

Simulation and computational equivalence

Weakening conditions on the monoid. We now introduce another
weakening of the notion of isomorphism: computational equivalence.
Equivalence is defined as pairwise simulation, where simulation is
defined as follows. This notion is quite natural for the computer scientists.
In the following definition we will use the notion of algebraic degree: if
𝑀 is a monoid and 𝐼 is a generating set, the algebraic degree deg𝐼(𝑚)
of 𝑚 ∈ 𝑀 w.r.t. 𝐼 is defined as the smallest 𝑘 ∈ N such that there exists
𝑎1 , . . . , 𝑎𝑘 ∈ 𝐼 𝑘 such that 𝑚 = 𝑎1𝑎2 . . . 𝑎𝑘 .

Definition 3.3.3 (Simulation) Given two models of computation 𝛼 : 𝕄(𝐼)↷
X and 𝛽 : 𝕄(𝐽) ↷ Y, we say that 𝛽 simulates 𝛼, written 𝛼 ≺ 𝛽, when
there exists a monomorphism 𝜑 : X→ Y and a map 𝜃 : 𝐼 → 𝕄(𝐽) such that
∀𝑖 ∈ 𝐼 , 𝜑 ◦ 𝛼(𝑖) = 𝛽(𝜃(𝑖)) ◦ 𝜑.

When 𝜙 is an isomorphism and 𝜃(𝐼) is a generating set for 𝕄(𝐽), we say that 𝛽
strongly simulates 𝛼 and write 𝛼 ∝ 𝛽.

The degree of the simulation is defined as max𝜄∈𝐼 deg𝐽(𝜃(𝑖)).

Lemma 3.3.2 Suppose 𝛼 : 𝕄(𝐼) ↷ X and 𝛽 : 𝕄(𝐽) ↷ Y are such that
𝛼 ≺ 𝛽 as witnessed by 𝜑 : X→ Y and a map 𝜃 : 𝐼 → 𝕄(𝐽). For all element
𝑚 ∈ 𝕄(𝐼), we have 𝜑 ◦ 𝛼(𝑚) = 𝛽(𝜃(𝑚)) ◦ 𝜑, where 𝜃(𝑚) denotes the monoid
morphism induced by 𝜃.

Proof. We write 𝑚 = 𝑖1 . . . 𝑖𝑘 as a product of elements of 𝐼. Then:

𝜑 ◦ 𝛼(𝑖1 . . . 𝑖𝑘)(𝑥) = 𝜑 ◦ 𝛼(𝑖1) ◦ · · · ◦ 𝛼(𝑖𝑘)(𝑥)
= 𝛽(𝜃(𝑖1)) ◦ 𝜑 ◦ · · · ◦ 𝛼(𝑖𝑘)(𝑥)
= . . .

= 𝛽(𝜃(𝑖1)) ◦ · · · ◦ 𝛽(𝜃(𝑖𝑘)) ◦ 𝜑(𝑥)
= 𝛽(𝜃(𝑚)) ◦ 𝜑(𝑥).

This shows the result. R
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Lemma 3.3.3 The relation ≺ (resp. ∝) is transitive.

Proof. The proof is straightfoward. Let 𝛼 : 𝕄(𝐼) ↷ X, 𝛽 : 𝕄(𝐽) ↷ Y,
and 𝛾 : 𝕄(𝐾)↷ Z be amcs. Suppose 𝛼 ≺ 𝛽 (resp. 𝛽 ≺ 𝛾), as witnessed
by the maps 𝜙 : X → Y (resp. 𝜙′ : Y → Z), and 𝜃 : 𝐼 → 𝕄(𝐽) (resp.
𝜃′ : 𝐽 → 𝕄(𝐾)). Now consider the map 𝜙′ ◦ 𝜙 : X→ Z and define 𝜃★𝜃′

as follows: for all 𝑖 ∈ 𝐼, we write 𝜃(𝑖) ∈ 𝕄(𝐽) as the product 𝑗0 𝑗1 . . . 𝑗𝑘 of
elements of 𝐽, and define 𝜃′ ◦ 𝜃(𝑖) = ∏𝑘

𝑚=0 𝜃
′(𝑗𝑚)where the product is

taken in 𝕄(𝐾) (i.e. 𝜃 composed with the monoid morphism induced by
𝜃′). Then, using the previous lemma, we have:

𝜙′ ◦ 𝜙(𝛼(𝑖)(𝑥)) = 𝜙′(𝛽(𝜃(𝑖))(𝜙(𝑥))) = 𝛾(𝜃′ ◦ 𝜃(𝑖))(𝜙′ ◦ 𝜙(𝑥))).

If moreover both simulations are strong, 𝜙′ ◦ 𝜙 is an isomorphism and
𝜃′ ◦ 𝜃(𝐼) is a generating subset of 𝕄(𝐾). R

Definition 3.3.4 (Equivalence) Two models of computation 𝛼 : 𝕄(𝐼)↷ X
and 𝛽 : 𝕄(𝐽)↷ Y are computationally equivalent, written 𝛼 � 𝛽, when 𝛼
simulates 𝛽 and 𝛽 simulates 𝛼.

As an example of computational equivalence, I will first define an
alternative notion of Turing machines as amcs. This is a simple example:
Turing machines working on an alphabet different from {0, 1}. We
will use the alphabet {0, 1}𝑘 . A second example of multi-tape Turing
machines will be detailed in the next chapter (Proposition 4.4.5) because
the corresponding amc is only program-wise simulated.

The first amc 𝛼tm(2𝑘 ) is easy to define as an adaptation of the amc 𝛼tm of
Turing machines over {0, 1}. We consider the space

Xtm(2𝑘 ) = {(𝑠𝑖)𝑖∈Z | 𝑠𝑖 ∈ {0, 1}𝑘 ∪ {∗}, ∃𝑁 ∈ N, |𝑖| < 𝑁 ⇒ 𝑠𝑖 = ∗},

and we define the following instructions acting on Xtm(2𝑘 ):

▶ (left) 𝛼tm(2𝑘 )(left) : (𝑠𝑖)𝑖∈Z ↦→ (𝑠𝑖+1)𝑖∈Z;
▶ (right) 𝛼tm(2𝑘 )(right) : (𝑠𝑖)𝑖∈Z ↦→ (𝑠𝑖−1)𝑖∈Z;
▶ (write) for all ★ ∈ {0, 1}𝑘 , 𝛼tm(2𝑘 )(write★) : (𝑠𝑖)𝑖∈Z ↦→ (𝑠𝑖)𝑖∈Z with
𝑠0 = ★ and 𝑠𝑖 = 𝑠𝑖 for 𝑖 ≠ 0;

▶ (read) for all ★ ∈ {0, 1}𝑘 , 𝛼tm(2𝑘 )(read★) : (𝑠𝑖)𝑖∈Z ↦→ (𝑠𝑖)𝑖∈Z when
𝑠0 = ★ and undefined otherwise.

Theorem 3.3.4 The amc 𝛼tm(2𝑘 ) is equivalent to the amc 𝛼tm. More precisely,
𝛼tm(2𝑘 ) 1-simulates 𝛼tm and 𝛼tm 3𝑘 − 2-simulates 𝛼tm(2𝑘 ).

Proof. The simulation of 𝛼tm by 𝛼tm(2𝑘 ) is straightforward. On defines the
monomorphism

Xtm → Xtm(2𝑘 )

induced by the injection 𝜙 : {0, 1} → {0, 1}𝑘 defined by 0 ↦→ 0𝑘 and
1 ↦→ 1𝑘 . The corresponding map 𝜃 is defined as follows:

𝜃(right) = right,
𝜃(left) = left,

𝜃(write𝑥) = write𝜙(𝑥) ,
𝜃(read𝑥) = read𝜙(𝑥).

The converse simulation is a bit more involved but easy to understand.
We simply write down the symbols in {0, 1}𝑘 directly on the tape of
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a standard Turing machine. The monomorphism is thus defined as
(𝑠1
𝑖
𝑠2
𝑖
. . . 𝑠𝑘

𝑖
)𝑖∈Z ↦→ (𝑠𝑖)𝑖∈Z where 𝑠𝑖 = 𝑠𝑚𝑞 with 𝑞, 𝑚 the quotient and

remainder of the division of 𝑖 by 𝑘. The corresponding map 𝜃 is then
defined as follows:

right ↦→ right𝑘

left ↦→ left𝑘

write𝑠1𝑠2 ...𝑠𝑘 ↦→ left𝑘−1 ◦ write𝑠𝑘 ◦ left ◦ · · · ◦ write𝑠2 ◦ left ◦ write𝑠1

read𝑠1𝑠2 ...𝑠𝑘 ↦→ left𝑘−1 ◦ read𝑠𝑘 ◦ left ◦ · · · ◦ read𝑠2 ◦ left ◦ read𝑠1

This map has degree 3𝑘 − 2. R

Remark 3.3.1 The notion of algebraic degree somehow captures how
complex the simulation is. Indeed, if elements of the generating set 𝐼 are
considered as atomic instructions all having unitary cost (in the sense
of complexity theory, i.e. atomic instructions are considered to all be
performed in a single unit of time), then the algebraic degree of the
simulation expresses how many units of time are needed (at most) for
simulating one instruction in the original model. However, this notion of
complexity is naive and quite unexpressive. A more general approach is
detailed in chapter 5.

We leave it to the reader to prove that the amc 𝛼★
stack[2] of 2-stack ma-

chines working on the alphabet {0, 1,★} (adapted from Example 3.2.5)
computationally simulates the amc 𝛽tm of one-tape Turing machines with
a separate input read-only tape (which can be defined as an adaptation
of the amc defined in Example 5.4.2). This simulation has algebraic
degree 3. We also leave it to the reader to convince themselves that no
computational simulation of 𝛼★

stack[2] by 𝛽tm exists, since the pop and
push operations require a sequence of instructions that depends on the
current length of the stacks. It is however possible to prove that 𝛼★

stack[2]
is program-wise intentionally simulated (Definition 4.4.2) by 𝛽tm.

3.4. Mathematical equivalences

Conjugation. Conjugation is a mathematical notion of equivalence that,
as such, does not involve the generating set of the monoids.

Definition 3.4.1 Let 𝛼 : 𝕄(𝐼)↷ X and 𝛽 : 𝕄(𝐽)↷ Y be abstract models of
computation. We say that 𝛼 and 𝛽 are conjugate when there exists a monoid
isomorphism 𝜃 : 𝕄(𝐼) → 𝕄(𝐽) and a space isomorphism 𝜙 : X→ Y such that
𝜙(𝑔 · 𝑥) = 𝜃(𝑔) · 𝜙(𝑥).

A first result is the following: isomorphic models are conjugate, and
conjugate models are strongly computationally equivalent.

Proposition 3.4.1 Isomorphic amcs are conjugate.

Proof. By definition, if 𝛼 : 𝕄(𝐼)↷ X and 𝛽 : 𝕄(𝐽)↷ Y are isomorphic,
there exists a bĳection 𝜃 : 𝐼 → 𝐽 and an isomorphism 𝜙 : X→ Y with:

∀𝑖 ∈ 𝐼 , ∀𝑥 ∈ X, 𝜙(𝛼(𝑖)(𝑥)) = 𝛽(𝜃(𝑖))(𝜙(𝑥).

We will show that 𝜃 induces a monoid isomorphism 𝕄(𝐼) → 𝕄(𝐽). Since
𝐼 and 𝐽 are generating sets, we only need to check that any relation
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in 𝕄(𝐼) is also satisfied in 𝕄(𝐽) and conversely. Suppose that 𝑤 and
𝑤′ are words in 𝐼∗ which are identified in 𝕄(𝐼). We will then show
that 𝛽(𝜃(𝑤)) = 𝛽(𝜃(𝑤′)) which will imply that 𝜃(𝑤) = 𝜃(𝑤′). Writing
𝑤 = 𝑤1 . . . 𝑤𝑛 and𝑤′ = 𝑤′1 . . . 𝑤

′
𝑘
, this is shown using the above property:

𝛽(𝜃(𝑤))(𝜙(𝑥)) = 𝛽(𝜃(𝑤1 . . . 𝑤𝑛))(𝜙(𝑥))
= 𝛽(𝜃(𝑤1) . . . 𝜃(𝑤𝑛)))(𝜙(𝑥))
= 𝛽(𝜃(𝑤1)) ◦ · · · ◦ 𝛽(𝜃(𝑤𝑛))(𝜙(𝑥))
= 𝛽(𝜃(𝑤1)) ◦ · · · ◦ 𝛽(𝜃(𝑤𝑛−1))(𝛽(𝜃(𝑤𝑛))(𝜙(𝑥)))
= 𝛽(𝜃(𝑤1)) ◦ · · · ◦ 𝛽(𝜃(𝑤𝑛−1))(𝜙(𝛼(𝑤𝑛)(𝑥)))
= 𝛽(𝜃(𝑤1)) ◦ · · · ◦ 𝛽(𝜃(𝑤𝑛−2))(𝛽(𝜃(𝑤𝑛−1))(𝜙(𝛼(𝑤𝑛)(𝑥))))
= 𝛽(𝜃(𝑤1)) ◦ · · · ◦ 𝛽(𝜃(𝑤𝑛−2))(𝜙(𝛼(𝑤𝑛−1)(𝛼(𝑤𝑛)(𝑥))))
= . . .

= 𝜙(𝛼(𝑤1) ◦ · · · ◦ 𝛼(𝑤𝑛)(𝑥))
= 𝜙(𝛼(𝑤1 . . . 𝑤𝑛)(𝑥))
= 𝜙(𝛼(𝑤)(𝑥))
= 𝜙(𝛼(𝑤′)(𝑥))
= 𝜙(𝛼(𝑤′1) ◦ · · · ◦ 𝛼(𝑤′𝑘)(𝑥))
= 𝛽(𝜃(𝑤′1) . . . 𝜃(𝑤′𝑘)))(𝜙(𝑥))
= 𝛽(𝜃(𝑤′))(𝜙(𝑥))

This shows that 𝛽(𝜃(𝑤)) = 𝛽(𝜃(𝑤′)), hence that 𝜃(𝑤) = 𝜃(𝑤′). A similar
argument shows that if 𝜃(𝑤) = 𝜃(𝑤′) then necessarily 𝑤 = 𝑤′. This
proves that 𝜃 lifts to a monoid isomorphism witnessing that 𝛼 and 𝛽 are
conjugate. R

Proposition 3.4.2 Conjugate amcs are (strongly) computationally equivalent.

Proof. Let 𝛼 : 𝕄(𝐼)↷ X and 𝛽 : 𝕄(𝐽)↷ Y be conjugate abstract models
of computation. We write 𝜃 : 𝕄(𝐼) → 𝕄(𝐽) the monoid morphism and
𝜙 : X→ Y the space isomorphism such that

𝜙(𝑔 · 𝑥) = 𝜃(𝑔) · 𝜙(𝑥). (3.1)

It should be clear that 𝛽 simulates 𝛼: for any 𝑖 ∈ 𝐼 and 𝑥 ∈ X, we have

𝜙 ◦ 𝛼(𝑖)(𝑥) = 𝜙(𝛼(𝑖)(𝑥)) = 𝛽(𝜃(𝑖))(𝜙(𝑥)) = 𝛽(𝜃(𝑖)) ◦ 𝜙(𝑥).

Conversely, 𝛼 simulates 𝛽: one can consider the map 𝜃−1 restricted to 𝐽
and the map 𝜙−1 : Y→ X; it then satisfies, for all 𝑗 ∈ 𝐽 and 𝑦 ∈ Y:

𝜙−1 ◦ 𝛽(𝑗)(𝑦) = 𝜙−1(𝛽(𝜃(𝜃−1(𝑗)))(𝜙(𝜙−1(𝑦)))
= 𝜙−1(𝜙(𝛼(𝜃−1(𝑗))(𝜙−1(𝑦))))
= 𝛼(𝜃−1(𝑗))(𝜙−1(𝑦)),

where we used Equation 3.1 for the third equality. Moreover, this is a
strong simulation: 𝜙 is an isomorphism and 𝜃(𝐼) generates 𝕄(𝐽) (since 𝜃
is an isomorphism). R

Orbit equivalence. Orbit equivalence is an equivalence weaker than
conjugation. We will see in a later section (chapter 12) how it may be
related to computational complexity. But this requires additional material;
we will only state the definition for the time being.
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Definition 3.4.2 Let 𝛼 : 𝕄(𝐼) ↷ X and 𝛽 : 𝕄(𝐽) ↷ Y be abstract models
of computation. We say that 𝛼 is orbit included in 𝛽 when there exists an
embedding of spaces Ψ : X ↩→ Y mapping orbits to orbits, i.e. ∀𝑥 ∈ X,

Ψ(𝕄(𝐼) · 𝑥) ⊆ 𝕄(𝐽) ·Ψ(𝑥).

When Ψ is an isomorphism and the latter inclusion is an equality, we say that
𝛼 is orbit equivalent to 𝛽.

Proposition 3.4.3 Simulation implies orbit inclusion. Strong simulation implies
orbit equivalence.

Proof. Let 𝛼 : 𝕄(𝐼) ↷ X and 𝛽 : 𝕄(𝐽) ↷ Y such that 𝛽 simulates 𝛼,
as witnessed by the embedding 𝜙 : X ↩→ Y and 𝜃 : 𝐼 → 𝕄(𝐽). Now,
consider the orbit of 𝑥 ∈ X under the action of 𝕄(𝐼), and consider
𝑦 = 𝜙(𝑥). For every 𝑖 ∈ 𝕄(𝐼), we have that 𝜙(𝑖 · 𝑥)) = 𝜃(𝑖) · 𝑦, implying
that 𝕄(𝐼) · 𝑥 ⊂ 𝕄(𝐽) · 𝜙(𝑥). This shows the first result.

When the simulation is strong, we moreover have that 𝜃(𝐼) is a generating
set for 𝕄(𝐽) and 𝜙 is an isomorphism. We then only need to show the
converse inclusion. Consider some 𝑗 ∈ 𝕄(𝐽). By assumption, 𝑗 can be
written as a 𝜃(𝑖0) ∈ 𝕄(𝐼), implying that 𝜙(𝑖0 · 𝑥)) = 𝜃(𝑖0) · 𝑦 = 𝑗 · 𝑦. This
proves the second result. R

It is important to notice that, in general, computationally equivalent amcs
are not orbit equivalent. But we will define later on a notion of weak
equivalence that is finer than both computational and orbit equivalence.

Compilation equivalence The following definition makes reference to
the notion of 𝛼-computable partition of the space X, where 𝛼 : 𝕄(𝐼)↷ X
is an amc. This definition requires notions from the next chapter: a 𝛼-
computable partition of the space X is a family of 𝛼-computable subspaces𝑋𝑖
of X, where a subset 𝑋𝑖 ⊂ X is 𝛼-computable if there exists an 𝛼-program
𝑃 such that17 17: Here Gr(𝑃) (Definition 4.3.3) is the

partial function X → X defined by the
program 𝑃.

Gr(𝑃) = {(𝑥, 𝑥) | 𝑥 ∈ 𝑋𝑖}.

Definition 3.4.3 Let 𝛼 : 𝕄(𝐼) ↷ X and 𝛽 : 𝕄(𝐽) ↷ Y be abstract models
of computation. We say that 𝛼 compiles 𝛽 when there exists an embedding
𝜙 : Y ↩→ X such that ∀𝜄 ∈ 𝐽, there exists a partition 𝑌1 , . . . , 𝑌𝑘 , . . . of Y and
elements 𝜄1 , . . . , 𝜄𝑘 , . . . in 𝕄(𝐼) such that

∀𝑦 ∈ 𝑌𝑖 , 𝜙 ◦ 𝛽(𝜄)(𝑦) = 𝛼(𝜄𝑖)(𝜙(𝑦)).

If for each 𝜄 ∈ 𝐽 the corresponding partition is finite (resp. 𝛼-computable), we
say that 𝛼 finitely (resp. computably) compiles 𝛽.

The following proposition is a direct consequence of the definitions.

Proposition 3.4.4 If 𝛼 : 𝕄(𝐼)↷ X simulates 𝛽 : 𝕄(𝐽)↷ Y, 𝛼 compiles 𝛽.

We will show in the next chapter that computable compilation implies
program-wise intentional simulation (Proposition 4.4.4).



3. Abstract models of computation 43

3.5. Relating with previous work: conditional
abstract models of computation

The above definition of model of computation seems the most adequate,
as it does not distinguish in an ad-hoc way between conditions – i.e.
verifying that the input satisfies a given property (which should be com-
putable – and computations. However, since some previous work used
the condition version, we state a second definition in which instructions
are distinguished from conditions. This definition will also be useful to
draw the connection with the notions introduced in earlier papers.

Definition 3.5.1 (Conditional AMC) A conditional abstract model of
computation (camc) is a pair of a monoid action 𝛼 : 𝕄(𝐼)↷ X and a family
of subspaces cond = {X𝑐 | 𝑐 ∈ 𝐶} where:

1. X is a space of configurations, together with a notion of morphisms;
2. 𝐼 is a set of instructions, generating the monoid action 𝛼;
3. 𝐶 is a set of conditions.

The first fact to notice is that a camc (𝛼, cond) defines an amc in a natural
way: writing cond = {X𝑐 | 𝑐 ∈ 𝐶}, we define an abstract model of
compuation amc(𝛼, cond) : 𝕄(𝐼 + 𝐶)↷ X defined as 𝛼 extended with
the set 𝐶 of projections {𝜋𝑐 | 𝑐 ∈ cond}where 𝜋𝑐 is defined by 𝜋𝑐(𝑥) = 𝑥
if 𝑥 ∈ X𝑐 and 𝜋𝑐(𝑥) undefined otherwise. It should be clear though that
not all amc is of the form amc(𝛼, cond) for a camc (𝛼, cond). But a slightly
weaker statement can be proven, an adjunction of sorts.

Proposition 3.5.1 Any amc 𝛽 there exists a camc (𝛼, cond) such that 𝛽 �
amc(𝛼, cond).

Example 3.5.1 Turing machines can also be defined as a camc. Using the
notations defined in the previous example, we consider the action on
X induced by moveR, left, and write★ for ∗ ∈ {0, 1,★}, together with
the conditions {X∗ | ∗ = 0, 1,★} where X∗ = {(𝑠𝑖)𝑖∈Z | 𝑠0 = ∗}. One can in
fact check that the amc defined in the previous example is the amc 𝛼̄ for
the camc 𝛼 thus defined.



Abstract machines and programs 4.
4.1. Abstract machines as graphings.

We now have our notion of abstract models of computation. As we have
seen in the examples, elements of the generating set should be thought
of as instructions. The next step is to define abstract machines, i.e. some
finite arrangement of such basic instructions that should be followed by a
machine. One important notion here will be that of control state, which is
part of the program and not of the model of computation. The reason is
historical (it was used to define additive connectives in linear realisability
models – see chapter 10) and one could argue that control states could
be represented as part of the configuration of the machine. This is for
instance what is done in Gurevich’s abstract state machines [73], but it [73]: Gurevich (1995), Specification and

Validation Methodshas two major drawbacks. The first is that it does not allow to compose
any two machines when they use the same part of configurations to
represent control states. E.g. if a machine 𝑀 with at least two control
states is composed with itself, but ends its computation in a different state
than the initial state, composing 𝑀 with itself naively will not represent
the expected behaviour; composing machines therefore requires some
careful renaming (which, though not impossible, seems less natural than
our approach). The second, and more important aspect is that of keeping
state handling out of the model of computation. This is important in view
of the proposed invariant-based approach to computational complexity,
but also has a philosophical importance. Indeed, while the model of
computation should be thought as an idealised model of a physical
device, the restriction to some particular forms of control states handling
(e.g. straight-line programs, circuits) witnesses a programming discipline
rather than a physical constraint.

The notion of abstract machine is based on the notion of graphing intro-
duced by Adams [18] and later studied by Gaboriau [20, 84] in ergodic [18]: Adams (1990), Trees and amenable

equivalence relations
[20]: Gaboriau (2000), Coût des relations
d’équivalence et des groupes
[84]: Gaboriau (2002), Invariants ℓ2 de
relations d’équivalence et de groupes

theory. Note that while the formal definition is almost identical (modulo
the addition of control states), our use of graphings differs greatly from
their original use. Graphings are of interests to researchers in ergodic
theory as generators of a given Borel equivalence relation [85]. Here

[85]: Gaboriau (2010), Orbit equivalence
and measured group theory

consider them as specifying dynamical processes. The connection with
Borel equivalence relations will nonetheless appear in a later section
(chapter 12) and their use in ergodic theory is part of the foundational
backbone of our invariant-based approach to complexity. Before defining
𝛼-programs, I introduce graphing representatives.

Definition 4.1.1 A graphing representative 𝐺 for an amc 𝛼 : 𝕄(𝐼)↷ X is
a family of elements of 𝕄(𝐼), i.e. it is defined as

𝐺 = {𝑚𝑒 | 𝑚𝑒 ∈ 𝕄(𝐼), 𝑒 ∈ 𝐸𝐺},

where 𝐸𝐺 is an indexing set. Elements of 𝐸𝐺 are called edges.

Let (Ω,×) be a monoid. An Ω-weighted graphing 𝐻 is a family of pairs of an
element of 𝕄(𝐼) and an element in Ω, i.e.

𝐻 = {(𝑚𝑒 , 𝜔𝑒) | 𝑚𝑒 ∈ 𝕄(𝐼), 𝜔𝑒 ∈ Ω, 𝑒 ∈ 𝐸𝐻}.

If all elements 𝑚𝑒 belong to 𝐼, we say that 𝐺 is atomic.
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A graphing is then defined as an equivalence of graphing representatives
with respect to some notion of equivalence (Definition 4.1.4).

We will here consider weighted graphing representatives over an exten-
sion of the amc that will be used to account for control states. We call
those specific graphing representatives abstract machine representatives
to distinguish them from standard graphing representatives. For the
moment, we fix an arbitrary monoid of weights Ω.

Definition 4.1.2 Let 𝛼 be an amc, with 𝛼 : 𝕄(𝐼) ↷ X and 𝑆𝑃 a space of
control states. An (𝛼,Ω)-machine representative 𝑃 with control states 𝑆𝑃 is
defined as an Ω-weighted 𝛼̃-graphing representative where 𝛼̃ = 𝛼×End∗(𝑆𝑃) is
the extension of the action 𝛼 to X × 𝑆𝑃 by the monoid of partial endomorphisms
on 𝑆𝑃 . That is, 𝑃 is defined as a countable collection:

{(𝑚𝑒 × 𝜎𝑒 , 𝜔𝑒) | 𝑒 ∈ 𝐸𝑃 , 𝑚𝑒 ∈ 𝕄(𝐼), 𝜎𝑒 ∈ 𝔊𝑆𝑃 , 𝜔𝑒 ∈ Ω}

Note that in general the space of control states is a finite discrete space1. If this is 1: Although some work considered the
case of having the interval [0, 1] as con-
trol space [29].

the case, one can – at the cost of multiplying the number of edges – write abstract
program representatives as tuples (𝑚𝑒 , 𝜔𝑒 , 𝑖𝑒 → 𝑓𝑒) where 𝑖𝑒 , 𝑓𝑒 ∈ 𝑆𝑃 .

The set of (𝛼,Ω)-machines representatives is written ProgramsΩ(𝛼;).

It is important to comment on the set 𝐸𝑃 here. The graphing generalises
(or rather, concretises) the transition function of, e.g. Turing, machines.
Standard notions of programs would therefore require the constraint
that 𝐸𝑃 should be finite, or at least countable. There is no need for this
constraint in theory, and the existence of graphings with infinite indexing
set can turn out to be useful in some cases [29]. [29]: Seiller (2016), Interaction Graphs: Full

Linear Logic

Remark 4.1.1 In some cases, it will be relevant to restrict the set of
functions allowed on the set of states. Typically, to represent algebraic
computation trees, it is convenient to consider the set of states to be
endowed with an order, and to restrict to the action by monotone functions
on this set. We however keep these somehow ad-hoc restrictions out of
the general theory; indeed algebraic computation trees are just specific
types of algebraic computation "graphs". Constraints on the control
structures are here considered as part of the choice of a programming
language (Definition 4.2.2).

In some cases, one may want to identify graphing representatives (and
therefore abstract programs). For instance, the following graphing repre-
sentatives may be considered equivalent:

▶ the graphing representative with a single edge corresponding to
right;

▶ the graphing representative with three edges corresponding to
right ◦ read0, right ◦ read1, and right ◦ read★.

Indeed, these are intuitively corresponding to the same program: in one
case the program moves to the right, in the other it moves to the right
(1) if reading a 0, (2) if reading a 1, or (3) if reading a blank tape symbol.
However, these programs are not equivalent in practice. While the Turing
machine model and associated notion of complexity considers reading as
a costless operation, memory access is the main source of complexity in
real-world computers. One could therefore very well consider those two
programs non-equivalent: while both will in the end perform the same
operation (i.e. access the same state 𝑥′ from a given state 𝑥), the second
one does so while performing non-necessary memory access, implying a
larger time complexity.
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One may anyway want to introduce some equivalences in specific models.
This can be done through the notion of equational theory.

Definition 4.1.3 Let 𝛼 : 𝕄(𝐼)↷ X be an abstract model of computation. An
equational theory E for 𝛼 is a set of pairs of families (𝑎𝑖)𝑛𝑖=0 , (𝑏 𝑗)𝑚𝑗=0 such that∑𝑛
𝑖=0 𝛼(𝑎𝑖) =

∑𝑚
𝑗=0 𝛼(𝑏 𝑗). We will write this as (𝑎𝑖)𝑛𝑖=0 =E (𝑏 𝑗)𝑚𝑗=0.

The full equational theory for 𝛼 is the set of all pairs of families (𝑎𝑛), (𝑏𝑚)
such that

∑
𝑎𝑛 and

∑
𝑏𝑚 are equal elements of X ⇀ X. We denote abusively∑

𝑎𝑛 =𝛼
∑
𝑏𝑚 that the pair (𝑎𝑛), (𝑏𝑚) belongs to the full equational theory of

𝛼.

An equational theory E for 𝛼 induces a notion of equivalence between
(𝛼,Ω)-machines. It is defined as the transitive closure of the family of
symmetric relations that follows, which is indexed by pairs (𝑎𝑖)𝑛𝑖=0 =E
(𝑏 𝑗)𝑚𝑗=0:

𝑀 ∪ {(𝑎𝑖 × 𝜎𝑖 , 𝜔) | 𝑖 ∈ [0, 𝑛]} ∼𝐸 𝑀 ∪ {(𝑏𝑖 × 𝜎𝑖 , 𝜔) | 𝑖 ∈ [0, 𝑚]}.

Another equivalence should be considered on abstract machines, namely
that of equality up to renaming the control states. We say that 𝑀 is
equivalent to 𝑁 up to the renaming of control states if there exists an
injective map 𝜃 : 𝑆𝑀 → 𝑆𝑁 such that for all 𝑒 ∈ 𝐸𝑀 , there exists 𝑓 ∈ 𝐸𝑁
such that

(𝑚𝑒 × 𝜎𝑒 , 𝜔𝑒) = (𝑚 𝑓 × 𝜃−1 ◦ 𝜎 𝑓 ◦ 𝜃, 𝜔 𝑓 ).

Combining those, we can define the notion of (𝛼,Ω)-machine (w.r.t. an
equational theory E).

Definition 4.1.4 Let 𝛼 be an amc with 𝛼 : 𝕄(𝐼)↷ X, E an equational theory
for 𝛼, and 𝑆𝑃 a space of control states. An abstract (𝛼, E ,Ω)-machine 𝑃 with
control states 𝑆𝑃 is an equivalence class of (𝛼,Ω)-machine representatives with
control states 𝑆𝑃 w.r.t. the equational theory E and w.r.t. the renaming of set of
control states.

The set of (𝛼,Ω)-machines w.r.t. the equational theory 𝐸 will be denoted by
ProgramsΩ(𝛼; E).
An (𝛼,Ω)-graphing is an equivalence class of (𝛼,Ω)-machine representatives
w.r.t. the full equational theory for 𝛼. The set of all (𝛼,Ω)-graphings will be
denoted by GraphingsΩ(𝛼)

Example 4.1.1 We now detail an example of Turing machine repre-
sented as an abstract machine. The Turing machine considered is an
automata (for simplicity), shown in Figure 4.1, and has four states
{odd, even, end0 , end1}, as well as the following transition function:

(0, even) → (right, odd)
(1, even) → (right, odd)
(★, even) → (right, end0)
(0, odd) → (right, even)
(1, odd) → (right, even)
(★, odd) → (right, end1)
(_, end0) → (right, end0)
(_, end1) → (right, end1)
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Figure 4.1.: Automata representation of
the Turing machine of Example 4.1.1
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Figure 4.2.: Illustration of an abstract pro-
gram representing the automata shown
in Figure 4.1

This machine can be represented in a straightforward manner as the
following 𝛼tm machine with state set {odd, even, end0 , end1}:

(right ◦ read0 , even→ odd),
(right ◦ read0 , odd→ even),
(right ◦ read1 , even→ odd),
(right ◦ read1 , odd→ even),
(right ◦ read★, even→ end0),
(right ◦ read★, odd→ end1),
(right, end0 → end0),
(right, end1 → end1)


This representation combines the discrete nature of the transition graph
and the complex and intricate dynamics induced by the action of in-
structions on the underlying space. In Figure 4.2 we try to illustrate the
situation: while the abstract machine can be thought of as a finite object,
the target subspace of a given instruction 𝜄 depends on the dynamics
of 𝛼(𝜄). We can thus see how complex the induced orbits (which will
correspond to computations, c.f. section 4.3) can become.

We will be using this example further in the next section to explain and
motivate the notion of program.

Remark 4.1.2 The consideration of non-trivial equational theories may be
problematic once one considers the notion of cost which generalises that
of complexity. In fact, if one considers that reading the current symbol is
costless then an equivalence between having three edges

(right ◦ read0 , 𝑖 → 𝑜), (right ◦ read1 , 𝑖 → 𝑜), (right ◦ read★, 𝑖 → 𝑜)

and a single edge
(right, 𝑖 → 𝑜)

would make sense. If one however considers that accessing the value has
an associated cost, one would not wish to consider those interchangeable.
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Once a notion of cost is considered attached to the model (section 5.4
and section 5.5), a natural choice of equivalence (which may be trivial)
thus becomes to consider equivalent two sets of edges that (1) perform
the same action (i.e. they represent the same partial function), and (2) the
associated cost is equal.

Now that these definitions are formally written, we will consider that
some values of Ω and E were chosen and simply write Programs(𝛼) for
the set of abstract programs. The values of Ω and E will only be discussed
when relevant, i.e. very rarely. In fact, the information provided by Ω

could very well be considered as part of the amc by using the natural
action of Ω on itself induced by the monoid structure: more formally one
can show a correspondence between (𝛼,Ω)-programs and (𝛼 ×Ω, {1})-
programs ({1} being the one-element monoid). But the consideration of
elements of Ω as weights of transitions stays closer to the intuitions and
will be kept throughout this document.

4.2. Programs

One important aspect of the theory and the practice of computer science is
the notion of programming language. We will here provide a completely
abstract definition that will be discussed and modulated later on.

In particular, we will distinguish between machines and programs: while a
machine is simply a device with a defined time evolution, the notion of
program introduces additional constraints to understand this evolution.
Let us take as example the machine that changes states depending on the
parity of the number of symbols 0 seen up to a given point (this is the
machine in Example 4.1.1). This machine does not compute a function; in
fact it does compute many different functions, depending in particular on
the control state one is starting from, but also depending on when/how
the computation stops. Here are several functions computed by this exact
machine:

▶ The function which accepts if the number of symbols 0 in the initial
★-free segment of the tape is odd;

▶ The function which decides if the number of symbols 0 in the initial
★-free segment of the tape is even;

▶ The function which decides if there is at least one 0 in the initial
★-free segment of the tape.

These functions are computed by looking at specific computations made
by the machine, that is orbits with constraints on the initial and final
control states. A program will in fact introduce initial and final control
states, to limit the computations considered, and allow for the definition
of the (partial) function computed by the program.

Definition 4.2.1 An 𝛼-program is defined as a machine 𝑃 ∈ Machines(𝛼)
with set of control states 𝑆, together with an initial state initial(𝑃) ∈ 𝑆 and
a terminal state terminal(𝑃) distinct from initial(𝑃), and such that2 for all 2: An equivalent requirement, which

will be sometimes considered, is that
there exists a unique edge in 𝑃 tak-
ing its source at terminal(𝑃), namely
(1, terminal(𝑃), terminal(𝑃)).

𝑒 ∈ 𝐸𝑃 , 𝑖𝑒 ≠ terminal(𝑃).
The set of 𝛼-programs is written Programs(𝛼).

We can now define the notion of programming language. It is interesting
here to comment first on the computer science practice. How does one
define a programming language? This is done in two steps. First, one
defines a syntax, usually using inductive grammars (but not exclusively).
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But a syntax alone is not enough. So the second step is to define the
semantics. This can be done in two ways: by giving term rewriting rules
(which is more usual in the functional programming community), or by
explicit operational semantics: i.e. providing a way to associate to each
term a program in a predefined model of computation. Both situations
are captured by the following definition.

Definition 4.2.2 A programming langage over the alphabet Σ is a langage P
in the formal sense, i.e. P ⊂ Σ∗, together with an operational semantics, i.e.
an amc 𝛼 : 𝕄(𝐼)↷ X together with a map |[·]| : P → Programs(𝛼).
Elements of P will be called source codes.

One important aspect of the theory of programming languages is that the
map |[·]| is in general neither surjective (to avoid pathological machines)
nor injective (to allow for defining a given program in several different
ways).

We note that the distinction between programs – i.e. machines described in
a programming language – and abstract machines is sometimes blurred.
In fact, the set of abstract programs is in itself a programming language.
More generally, a universal program (section 5.7) defines a programming
language with a surjective mapping into programs.

An important note to make relative to programming languages is that the
view above may seem quite limited while the theory of programming
languages is rich and complex. In most cases, a programming language
will have some structure, i.e. the set 𝑃 is not simply a language but is
defined by induction and/or has an additional algebraic structure. We
however believe that further investigations on how the present approach
can account for these aspects are outside of the scope of this document.

Restrictions on the control structures or the graphing. Some com-
putational frameworks impose constraints on the control structure of
programs or on the graphings considered. For instance, circuits impose
the absence of loops: control states can be totally ordered in such a way
that transitions are strictly increasing. Another restriction, at the level of
graphings, is the constraint of determinism. We view these constraints as
part of a choice of a programming language, i.e. restricting to determinis-
tic abstract programs does not correspond to a new notion of machine,
but rather to disallowing some machines.

Among these restrictions, we will define and discuss the following
restrictions:

▶ loop-free programs, or circuits;
▶ stateless programs;
▶ deterministic programs;
▶ probabilistic programs.

Definition 4.2.3 A loop-free program, or circuit, is an abstract program 𝐺
with set of states 𝑆𝐺 such that there exists a partial order < on 𝑆𝐺 satisfying:

▶ for all edge (𝑚𝑒 , 𝑖𝑒 , 𝑜𝑒) in 𝐺, we have 𝑖𝑒 < 𝑜𝑒 ;
▶ initial(𝐺) is the smallest element of 𝑆𝐺;
▶ terminal(𝐺) is the largest element of 𝑆𝐺.

As a particular case of loop-free programs, we distinguish straightline programs,
for which the order < is total.
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Examples of loop-free programs will be given in chapter 8: algebraic
computation trees, or algebraic circuits, are natural occurrences of loop-
free programs.

Definition 4.2.4 A stateless program 𝑃 is an abstract program with 𝑆𝑃 =

{initial(𝑃), terminal(𝑃)}.

Important examples of stateless programs arise from rewriting systems.
Indeed, in those examples the programs do not possess control states. As
a consequence, the action of a lambda-term 𝑡 on Λ corresponds to the
stateless program |[𝑡]| = {(𝑡 , initial(𝑡), terminal(𝑡))}. This representation
however hides that the action of 𝑡 on Λ is itself defined as a dynamical
process at the lower level: computing |[𝑡]|(𝑢) requires computing the orbit
of (𝑡)𝑢 in the underlying dynamical system→𝛽↷ Λ.

Similarly, cellular automata and automata networks give rise to stateless
programs. As an example, let us take the cellular automata example. As
explained above, one can define the corresponding amc as (Σ𝑉 → Σ)∗↷
ΣX𝑐.𝑎. , where an element of Σ𝑉 → Σ represents a set of rules. A cellular
automata is traditionally given by a single set of rules 𝑅, and therefore
corresponds to the program {(𝑅, initial(𝑅), initial(𝑅))}. Note that here
the terminal state is never reached. From the abstract model, one could
consider alternative models in which different sets of rules are applied
at different steps. But since each set of rules defines a total function,
this implies that any finite deterministic program will correspond to a
finite sequence of rules applied one after the other (and starting back at
the first after the last set of rules is applied): but this is equivalent to a
single set of rules (usually on a larger alphabet: a sequence of 𝑘 rules
defined on a neighbourhood of size 𝑛 corresponds to a single rule on a
neighbourhood of size 𝑛𝑘).

Definition 4.2.5 A deterministic program is an abstract program 𝐺 such
that for all3 𝑥 ∈ X and 𝑠 ∈ 𝑆𝐺, there exists at most one 𝑒 ∈ 𝐸𝐺 with 3: In the case of measurable spaces, this

property may only be satisfied for almost
all 𝑥 ∈ X.

(𝑥, 𝑠) ∈ Dom(𝛼(𝑚𝑒)).

Proposition 4.2.1 A deterministic 𝛼-graphing defines a partial dynamical
systems 𝑓 on X × [𝑘] (𝑘 being the cardinal of the set of control states) whose
graph is included in the set:

{(𝑥, 𝑦) | 𝑥 ∈ X × [𝑘], ∃(𝑚, 𝜎) ∈ 𝕄(𝐼) × End∗([𝑘]), 𝛼(𝑚) × 𝜎(𝑥) = 𝑦}.

Proof. We give the proof for the case of graphing with a singleton set as
set of states. The general result follows naturally.

We first explain how to associate a deterministic 𝛼-graphing to a partial
dynamical system. Consider 𝐺 = {(𝑚𝑒) | 𝑒 ∈ 𝐸𝐺} an 𝛼-graphing
representative. Since it is deterministic, the following relation defines a
partial function:

𝑓𝐺 : 𝑥 ↦→
∑
𝑒∈𝐸𝐺

𝛼(𝑚𝑒)(𝑥)

Now, the fact that the graph of 𝑓𝐺 is included in

{(𝑥, 𝑦) | 𝑥 ∈ X, ∃𝑚 ∈ 𝕄(𝐼), 𝛼(𝑚) × 𝜎(𝑥) = 𝑦}

is a direct consequence of the definition: any (𝑥, 𝑓𝐺(𝑥)) is by definition of
the form (𝑥, 𝛼(𝑚𝑒)(𝑥)) for a chosen 𝑚𝑒 ∈ 𝕄(𝐼). R
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Remark 4.2.1 The converse is not true, mainly because a partial dynamical
system whose graph is included in the required set does not necessarily
‘decompose’ as a set of edges. In particular, one may consider the sub-
spaces X𝑚 = {𝑥 ∈ X | 𝑓 (𝑥) = 𝛼(𝑚)(𝑥)}which are natural candidates for
the sources of such edges, but nothing ensures that the projection onto
X𝑚 belongs to the amc.

Remark 4.2.2 This property leads to the proof that the graph of a de-
terministic program 𝑃, i.e. the set of pairs (𝑥, 𝑦) where 𝑦 is the output
configuration of 𝑃 when given 𝑥 as initial configuration, is included in a
preorder defined only from 𝛼 (Equation 4.1).

Definition 4.2.6 A subprobabilistic program is an abstract (]0, 1],×)-weighted
program 𝐺 such that for all4 𝑥 ∈ X and 𝑠 ∈ 𝑆𝐺, we have: 4: In the case of measurable spaces, this

property may only be satisfied for almost
all 𝑥 ∈ X.

∑
𝑒∈𝐸𝐺 ,(𝑥,𝑠)∈Dom(𝛼(𝑚𝑒 ))

𝜔𝑒 ≤ 1.

The program 𝐺 is probabilistic when for all 𝑥 ∈ X and 𝑠 ∈ 𝑆𝐺 the expression
above is an equality.

We will now show how the probabilistic graphings on measurable spaces
define specific sub-Markov kernels called discrete-image.

Definition 4.2.7 Let X, Y be measured spaces. A sub-Markov kernel on X×Y is
a measurable map 𝜅 : 𝑋 × Y → [0, 1] such that ∀𝑥 ∈ 𝑋 and ∀𝐵 ∈ Y , 𝜅(𝑥, _)
is a subprobability measure on 𝑋 and 𝜅(_, 𝐵) is a measurable function.

If 𝜅(𝑥, _) is a probability measure, 𝜅 is a Markov kernel.

Definition 4.2.8 A discrete-image kernel is a sub-Markov kernel 𝜅 on X × Y
such that for all 𝑥 ∈ X, 𝜅(𝑥, _) is a discrete probability distribution.

Proposition 4.2.2 Consider an amc 𝛼 on a measurable space X. A sub-
probabilistic 𝛼-graphing defines a sub-Markov discrete-image kernel 𝜅 on
(X × [𝑘]) × (X × [𝑘]) (𝑘 being the cardinal of the set of control states) whose
graph is included in the set:

{(𝑥, 𝑦) | 𝑥 ∈ X × [𝑘], ∃(𝑚, 𝜎) ∈ 𝕄(𝐼) × End∗([𝑘]), 𝛼(𝑚) × 𝜎(𝑥) = 𝑦}.

Proof. Here again, we prove the result for graphings without control
states, which is enough to deduce the general statement.

One defines from a subprobabilistic graphing 𝐺 = {𝑚𝑒 , 𝜔𝑒 | 𝑒 ∈ 𝐸𝐺} the
kernel:

𝜅𝐺 : 𝑋 × X → [0, 1]; (𝑥, 𝑦) ↦→
∑

𝑒∈𝐸𝐺 ,𝛼(𝑚𝑒 )(𝑥)=𝑦
𝜔𝑒 .

The fact that is is a discrete-image sub-Markov kernel is clear.

Now, we define the graph of 𝜅𝐺 as the set of all (𝑥, 𝑦) such that 𝜅𝐺(𝑥, 𝑦) >
0. Then by definition there exists some 𝑒 ∈ 𝐸𝐺 such that 𝛼(𝑚𝑒)(𝑥) = 𝑦,
and 𝜔𝑒 > 0. This implies the result. R
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4.3. Computation

Before defining notions of equivalences between programs, we need to
establish some notations and define what a computation is. The definition
is quite easy: since a program is a (generalised) dynamical system, a
computation should correspond to an orbit.

Definition 4.3.1 Let 𝛼 be an amc and 𝑀 be an abstract 𝛼-machine with set of
states 𝑆𝑀 . An abstract computation of 𝑀 on (𝑥, 𝑠) ∈ X × 𝑆𝑀 is defined as
an orbit

(𝑥, 𝑠) = (𝑥0 , 𝑠0) → (𝑥1 , 𝑠1) → . . .

such that for all (𝑥𝑖 , 𝑠𝑖) there exists 𝑒 ∈ 𝐸𝑀 such that 𝛼(𝑚𝑒)(𝑥𝑖 , 𝑠𝑖) =

(𝑥𝑖+1 , 𝑠𝑖+1).
Given a machine 𝑀 and an integer 𝑛, we denote by Orbits𝑛(𝑀; (𝑥0 , 𝑠0)) the
set of orbits of length 𝑛 starting at (𝑥0 , 𝑠0), i.e. Orbits𝑛(𝑀; (𝑥0 , 𝑠0)) is the set

{(𝑥𝑖 , 𝑠𝑖)𝑛𝑖=1 | ∀𝑖 ∈ [0, 𝑛 − 1], ∃𝑒 ∈ 𝐸𝑀 , 𝛼(𝑚𝑒)(𝑥𝑖 , 𝑠𝑖) = (𝑥𝑖+1 , 𝑦𝑖+1)}.

Note that we do not provide explicitly the elements of𝕄(𝐼) used to define
the orbit. This implies that an abstract computation is not bound to an
amc, but is only a sequence in X × 𝑆𝑀 . We now introduce a number of
notations.

Definition 4.3.2 Let 𝛼 be an amc and 𝑀 be an abstract 𝛼-machine with set of
states 𝑆𝑀 . For all 𝑥 ∈ X and state 𝑠, we define the orbit sphere of size 𝑛 as:

𝑀(𝑛)(𝑥, 𝑠) = {(𝑦, 𝑠′) | ∃O ∈ Orbits𝑛(𝑀; (𝑥, 𝑠)), (𝑦, 𝑠′) = O𝑛 .

This leads to the definition of the orbit ball of size 𝑛 as follows:

[𝑀]𝑛 · (𝑥, 𝑠) =
𝑛⋃
𝑖=0

𝑀(𝑖)(𝑥, 𝑠).

We will also write [𝑀]𝜔 · (𝑥, 𝑠) the set ∪∞
𝑖=0𝑀

(𝑖)(𝑥, 𝑠).

We will now consider the input/output behaviour of programs. Indeed,
while a program is represented as a dynamical system, one can reduce it
to a relation on the space of configurations as follows.

Definition 4.3.3 Given an amc 𝛼 and a program 𝑃 in Programs(𝛼), we define
the relation Gr(𝑃) on X × X as:

{(𝑥, 𝑦) | 𝑥 ∈ X, (𝑦, terminal(𝑃)) ∈ [𝑃]𝜔 · (𝑥, initial(𝑃))}.

Remark 4.3.1 Note that if 𝑃 is deterministic, the orbit sphere of size 𝑛
consists in a singleton and the relation Gr(𝑃) is a functional relation.

We will introduce a last notation for the set of terminating orbits, i.e. orbits
containing exactly one terminating state.

Definition 4.3.4 Let 𝛼 be an amc and 𝑃 be an abstract 𝛼-program with set of
states 𝑆𝑃 . For all 𝑥 ∈ X, we define the set of terminating orbits Orbits𝑇(𝑃; 𝑥)
as the set:

{O ∈ Orbits𝜔(𝑃; (𝑥, initial(𝑃))) | ∃!𝑥′ ∈ X, (𝑥′, terminal(𝑃)) ∈ O}.
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Note that this implies, by definition of programs, that the terminal state appears
in the last configuration of the orbit.

We say that 𝑃 is a terminating program when

Orbits𝑇(𝑃; 𝑥) = Orbits𝜔(𝑃; (𝑥, initial(𝑃))).

We write Programs𝑇(𝛼) the set of terminating programs in Programs(𝛼).

Remark 4.3.2 While a deterministic program always has an associated
(partial) function, it is in general a partial function from X to X. To
represent functions, say, from integers to integers, one has to introduce
data types and consider programs restricted to those data types.

We will now notice the following important fact: the choice of the amc 𝛼
corresponds to putting constraints on the possible (finite) computations
by 𝛼-programs. Let us first discuss the deterministic case. A computation
is here described as a sequence of instructions applied to a chosen 𝑥 ∈ X,
ending at a point 𝑦 ∈ X. As a consequence, we can deduce that if a given
computation is possible then the pair (𝑥, 𝑦) belongs to the following set:

P(𝛼) = {(𝑥, 𝑦) ∈ X × X | ∃𝑚 ∈ 𝕄(𝐼), 𝛼(𝑚)(𝑥) = 𝑦}. (4.1)

Conversely, any pair (𝑥, 𝑦) ∈ P(𝛼) is realised as an orbit. By definition
there exists 𝑚 = 𝑖1 . . . 𝑖𝑛 ∈ 𝕄(𝐼) such that 𝛼(𝑚)(𝑥) = 𝑦. Then one can
consider the 𝛼-program with deg(𝑚) = 𝑛 control states defined as

{(𝑖𝑘 , 𝑘 → 𝑘 + 1) | 𝑘 = 1, . . . , 𝑛 − 1} ∪ {(1, 𝑛 → 𝑛)}.

The set P(𝛼) is in general a pre-order. But in the specific case where 𝛼
is a measure-preserving group action, it is what is commonly known as a
Borel equivalence relation [86]. [86]: Kechris (2012), Classical Descriptive

Set Theory

Definition 4.3.5 Let 𝛼 : 𝕄(𝐼) ↷ X and 𝛽 : 𝕄(𝐽) ↷ Y be abstract models
of computation. We say that 𝛼 is weakly reducible to 𝛽 when there exists an
embedding 𝜙 : X ↩→ Y such that 𝜙(P(𝛼)) ⊆ P(𝛽), where

𝜙(P(𝛼)) = {(𝜙(𝑥), 𝜙(𝑦)) ∈ Y × Y | (𝑥, 𝑦) ∈ P(𝛼)}.

Lemma 4.3.1 Let 𝛼 be an amc and 𝑃 a program in Programs(𝛼). Then we
have Gr(𝑃) ⊂ P(𝛼).

Proof. Let 𝛼 : 𝕄(𝐼)↷ X be an amc and 𝑃 ∈ Programs(𝛼). By definition,
a pair (𝑎, 𝑏) belongs to Gr(𝑃) if and only if (𝑏, terminal(𝑃)) ∈ [𝑃]𝜔 ·
(𝑎, initial(𝑃)), that is if there exists a computation

(𝑎, initial(𝑃)) 𝑚1→ (𝑥1 , 𝑠1) → · · · → (𝑥𝑛−1 , 𝑠𝑛−1)
𝑚𝑛→ (𝑏, terminal(𝑃)).

This implies that 𝛼(∏𝑛
𝑖=1 𝑚𝑖)(𝑥) = 𝑦, hence (𝑎, 𝑏) ∈ P(𝛼). R

Lemma 4.3.2 Given an amc 𝛼, we have

∪𝑃∈Programs(𝛼)Gr(𝑃) = P(𝛼).

Proof. Let 𝛼 : 𝕄(𝐼)↷ X be an amc. From the previous lemma, we have
that

∪𝑃∈Programs(𝛼)Gr(𝑃) ⊆ P(𝛼).



4. Abstract machines and programs 54

For the converse inclusion, we consider a pair (𝑎, 𝑏) ∈ P(𝛼) and prove
that (𝑎, 𝑏) ∈ Gr(𝑃) for some program 𝑃 ∈ Programs(𝛼). This is straight-
forward: by definition the fact that (𝑎, 𝑏) ∈ P(𝛼) implies the existence of
an element 𝑚 ∈ 𝕄(𝐼) such that 𝛼(𝑚)(𝑎) = 𝑏. Now, one can consider the
program 𝑃 with exactly two states initial(𝑃) and terminal(𝑃) and edges
(𝑚, initial(𝑃) → terminal(𝑃)) and (1, terminal(𝑃) → terminal(𝑃)). By
construction, Gr(𝑃) = {(𝑥, 𝑦) | 𝑥 ∈ X, 𝑦 = 𝛼(𝑚)(𝑥)}, hence (𝑎, 𝑏) ∈
Gr(𝑃). R

Theorem 4.3.3 Let 𝛼 : 𝕄(𝐼)↷ X be simulated by 𝛽 : 𝕄(𝐽)↷ Y. Then 𝛼 is
weakly reducible to 𝛽.

Proof. Suppose that 𝛼 : 𝕄(𝐼)↷ X is simulated by 𝛽 : 𝕄(𝐽)↷ Y. This
means there exists 𝜙 : X→ Y and 𝜃 : 𝐼 → 𝕄(𝐽) such that:

∀𝑥 ∈ X, ∀𝜄 ∈ 𝐼 , 𝜙 ◦ 𝛼(𝜄) = 𝛽(𝜃(𝜄)) ◦ 𝜙.

Consider now (𝑥, 𝑦) ∈ P(𝛼). This means there exists 𝜄 ∈ 𝕄(𝐼) such
that 𝑦 = 𝛼(𝜄)(𝑥). To prove the result, we need to show that the pair
(𝜙(𝑥), 𝜙(𝛼(𝜄))(𝑥)) belongs to P(𝛽). But using the above property, we can
deduce that 𝜙(𝛼(𝜄))(𝑥)) = 𝛽(𝜃(𝜄))(𝜙(𝑥)), i.e. writing 𝑦 = 𝜙(𝑥), this pair is
equal to (𝑦, 𝛽(𝜇)(𝑦)) for a well-chosen 𝜇 ∈ 𝕄(𝐽), implying that it belongs
to P(𝛽). R

4.4. Program-level equivalences

Intensional equivalence

We can now define a number of machine-level equivalences. These
equivalences state that each machine in a given amc 𝛼 is simulated by
a machine in an amc 𝛽. However, the simulation is not necessarily as
structured as a computational simulation (Definition 3.3.3).

Definition 4.4.1 Let 𝛼 : 𝕄(𝐼) ↷ X and 𝛽 : 𝕄(𝐽) ↷ Y be amcs, and
𝜙 be an embedding X ↩→ Y. A program 𝑃 ∈ Programs(𝛼) is inten-
tionally simulated by a program 𝑄 ∈ Programs(𝛽) w.r.t. 𝜙 if for all
𝑥 ∈ X and orbit O ∈ Orbits𝜔(𝑃; (𝑥, initial(𝑃))), there exists an orbit
𝜙{O} ∈ Orbits𝜔(𝑄; (𝜙(𝑥), initial(𝑄))) and an injection 𝜄 : N → N such
that:

∀𝑘 ∈ N,
(
𝜙(𝑥𝑘) = 𝑥′𝑘

)
∧

(
𝑠𝑘 = terminal(𝑃) ⇒ 𝑠′𝑘 = terminal(𝑄)

)
,

where we write O𝑘 = (𝑥𝑘 , 𝑠𝑘) and 𝜙{O}𝜄(𝑘) = (𝑥′𝑘 , 𝑠
′
𝑘
).

We write 𝑃 ≺int
pw 𝑄 when 𝑃 is program-wise intentionally simulated by 𝑄.

Definition 4.4.2 An amc 𝛼 : 𝕄(𝐼) ↷ X is program-wise intentionally
simulated by an amc 𝛽 : 𝕄(𝐽) ↷ Y when there exists a space embedding
𝜙 : X ↩→ Y such that for all𝑀 ∈ Programs(𝛼) there exists𝑁 ∈ Programs(𝛽)
such that 𝑀 ≺int

pw 𝑁 w.r.t. 𝜙. This is written as 𝛼 ≺int
pw 𝛽.

Proposition 4.4.1 If 𝛼 ≺int
pw 𝛽, and 𝛽 ≺int

pw 𝛾, then 𝛼 ≺int
pw 𝛾.
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Proof. The proof is pretty straightforward. There exists a space em-
bedding 𝜙 : X ↩→ Y such that for all 𝑀 ∈ Programs(𝛼) there exists
𝑁 ∈ Programs(𝛽) such that 𝑀 ≺int

pw 𝑁 w.r.t. 𝜙, and there exists a space
embedding 𝜓 : Y ↩→ Z such that for all 𝑁 ∈ Programs(𝛽) there exists
𝑃 ∈ Programs(𝛾) such that 𝑁 ≺int

pw 𝑃 w.r.t. 𝜓. It should be clear that the
space embedding 𝜓 ◦ 𝜙 : X ↩→ Z is such that for all 𝑀 ∈ Programs(𝛼)
there exists 𝑃 ∈ Programs(𝛾) such that 𝑀 ≺int

pw 𝑃 w.r.t. 𝜓 ◦ 𝜙. R

Definition 4.4.3 An amc 𝛼 : 𝕄(𝐼)↷ X is intentionally equivalent to an
amc 𝛽 : 𝕄(𝐽) ↷ Y when 𝛼 program-wise intentionally simulates 𝛽 and 𝛽
program-wise intentionally simulates 𝛼.

Lemma 4.4.2 If 𝛼 simulates 𝛽, then 𝛼 program-wise intentionally simulates 𝛽.

Proof. Suppose that 𝛼 : 𝕄(𝐼)↷ X simulates 𝛽 : 𝕄(𝐽)↷ Y through the
map 𝜙 : Y→ X. Then for each instruction 𝜄 ∈ 𝐽, there exists 𝜃(𝜄) ∈ 𝕄(𝐼)
such that 𝜙 ◦ 𝛼(𝜄) = 𝛽(𝜃(𝜄)) ◦ 𝜙. We extend 𝜃 to a monoid morphism
𝕄(𝐽) → 𝕄(𝐼)which we abusively denote by 𝜃.

Now, consider a program 𝑀 ∈ Programs(𝛽)with set of states 𝑆𝑀 defined
as

(𝑚𝑒 × 𝜎𝑒 , 𝜔𝑒) | 𝑒 ∈ 𝐸𝑀).
We define 𝑀̃ as the 𝛼-program with set of states 𝑆𝑀 and edges

(𝜃(𝑚𝑒) × 𝜎𝑒 , 𝜔𝑒) | 𝑒 ∈ 𝐸𝑀),

letting initial(𝑀̃) = initial(𝑀) and terminal(𝑀̃) = terminal(𝑀).
We will show that for all 𝑘 ∈ N and for all (𝑦, 𝑠) ∈ Y × 𝑆𝑀 , 𝜙(𝑀(𝑘) ·
(𝑥, 𝑠)) = 𝑀̃𝑘 · (𝜙(𝑥), 𝑠). But this is a simple induction using the fact that
𝜙(𝛼(𝜄)(𝑦)) = 𝛽(𝜃(𝜄))(𝜙(𝑦)) for all 𝜄 ∈ 𝐽 and 𝑦 ∈ Y. R

A direct corollary of this is the following result.

Proposition 4.4.3 Computationally equivalent amcs are intentionally equiva-
lent.

Before going through an example, let us state and prove another implica-
tion between different notions of simulations.

Proposition 4.4.4 If 𝛼 : 𝕄(𝐼)↷ X computably compiles 𝛽 : 𝕄(𝐽)↷ Y, then
𝛼 program-wise extensionally simulates 𝛽.

Proof. Suppose that 𝛼 : 𝕄(𝐼)↷ X computably compiles 𝛽 : 𝕄(𝐽)↷ Y,
and take a program 𝑃 ∈ Programs(𝛽) through 𝜙 : Y → X. We will
explain how to defined from an edge 𝑒 in 𝑃 several edges {𝑒1 , . . . , 𝑒𝑘 , . . . }
in the amc 𝛼 that jointly program-wise intentionally simulate 𝑒. This
construction then easily provides a construction of a program 𝑃̄ ∈
Programs(𝛼) that program-wise intentionally simulates 𝑃. Let then
𝑒 = (𝑚𝑒 , 𝑠0 → 𝑠1)be an edge. By assumption there exists an 𝛼-computable
partition (𝑌𝑖)𝑖∈N and elements (𝜄𝑖)𝑖∈N in 𝕄(𝐼) such that

∀𝑖 ∈ N, ∀𝑦 ∈ 𝑌𝑖 , 𝜙 ◦ 𝛽(𝜄)(𝑦) = 𝛼(𝜄𝑖)(𝜙(𝑦)). (4.2)

This means there exists programs (𝑃𝑖)𝑖∈N in Programs(𝛼) such that for all
𝑖 ∈ N, 𝑃𝑖 computes the projection onto 𝑌𝑖 . We can assume that all those
programs have disjoint sets of control states. We can then build an 𝛼-
program𝑄 by taking the union of all those programs𝑃𝑖 , identifying states
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initial(𝑄) = initial(𝑃0) = initial(𝑃1) = . . . and appending additional
edges (𝜃(𝜄𝑖), terminal(𝑃)𝑖 , terminal(𝑄)) for all 𝑖. The fact that the pro-
gram 𝑄 program-wise intentionally simulates the edge 𝑒 should be clear
from the assumption: an orbit starting at 𝑥 and reaching terminal(𝑄)
needs to go through one of the states terminal(𝑃)𝑖 , and this implies that
𝑥 belongs to 𝑌𝑖 , and the result then follows from Equation 4.2. R

Example 4.4.1 As an example of an amc which is not computationally
simulated by 𝛼tm but program-wise simulated, we consider the amc 𝛼𝑘tm
of multi-tape Turing machines. This is a simple adaptation of the amc
𝛼tm of Turing machines over {0, 1}. We consider the space

X𝑘tm =

𝑘∏
𝑖=1

(
{0, 1, ∗}Z∗ × Z

)
,

and we define the following instruction acting on X𝑘tm:

▶ (left) for all 𝜌 ∈ {1, . . . , 𝑘},

𝛼𝑘tm(left(𝜌)) : ((𝑠 𝑗
𝑖
)𝑖∈Z , ℎ

𝑗)𝑗∈{1,...,𝑘} ↦→ ((𝑠 𝑗𝑖 )𝑖∈Z , ℎ̄
𝑗)𝑗∈{1,...,𝑘} ,

where ℎ̄ 𝑗 = ℎ 𝑗 if and only if 𝑗 ≠ 𝜌, and ℎ̄𝜌 = ℎ𝜌 − 1;
▶ (right) for all 𝜌 ∈ {1, . . . , 𝑘},

𝛼𝑘tm(right(𝜌)) : ((𝑠 𝑗
𝑖
)𝑖∈Z , ℎ

𝑗)𝑗∈{1,...,𝑘} ↦→ ((𝑠 𝑗𝑖 )𝑖∈Z , ℎ̄
𝑗)𝑗∈{1,...,𝑘} ,

where ℎ̄ 𝑗 = ℎ 𝑗 if and only if 𝑗 ≠ 𝜌, and ℎ̄𝜌 = ℎ𝜌 + 1;
▶ (write) for all ★ ∈ {0, 1}𝑘 and 𝜌 ∈ {1, . . . , 𝑘},

𝛼𝑘tm(write∗) : ((𝑠 𝑗
𝑖
)𝑖∈Z , ℎ

𝑗)𝑗∈{1,...,𝑘} ↦→ ((𝑠 𝑗𝑖 )𝑖∈Z , ℎ
𝑗)𝑗∈{1,...,𝑘} ,

where 𝑠 𝑗
𝑖
= 𝑠

𝑗

𝑖
if and only if 𝑗 ≠ 𝜌 or 𝑖 ≠ ℎ𝜌, and 𝑠𝜌

ℎ𝜌
= ∗;

▶ (read) for all ★ ∈ {0, 1}𝑘 and 𝜌 ∈ {1, . . . , 𝑘},

𝛼𝑘tm(read∗) : ((𝑠 𝑗
𝑖
)𝑖∈Z , ℎ

𝑗)𝑗∈{1,...,𝑘} ↦→ ((𝑠 𝑗𝑖 )𝑖∈Z , ℎ
𝑗)𝑗∈{1,...,𝑘} ,

when 𝑠𝜌
ℎ𝜌

= ∗ and undefined otherwise.

Proposition 4.4.5 The amc 𝛼̃tm program-wise simulates the amc 𝛼𝑘tm.

Proof. We define

min = min(min
𝑗
{ℎ 𝑗},min

𝑖
{∃𝑗 , 𝑠 𝑗

𝑖
∈ {0, 1}})

max = max(max
𝑗
{ℎ 𝑗},max

𝑖
{∃𝑗 , 𝑠 𝑗

𝑖
∈ {0, 1}}).

The embedding X𝑘tm ↩→ X̃tm is defined by:

((𝑠 𝑗
𝑖
)𝑖∈Z , ℎ

𝑗)𝑗∈{1,...,𝑘} ↦→ ((𝑡𝑖)𝑖∈Z , ℎ),

where

▶ ℎ = 2ℎ1𝑘 + 1 and
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▶ for all 𝑗 ∈ {1, . . . , 𝑘} and 𝑖 ∈ [min,max]:

𝑡3𝑖𝑘+2𝑘+𝑗−1 = 𝑠
𝑗

𝑖

𝑡3𝑖𝑘+2(𝑗−1)𝑡3𝑖𝑘+2𝑗−1) = 00 if ℎ 𝑗 > 𝑖

𝑡3𝑖𝑘+2(𝑗−1)𝑡3𝑖𝑘+2𝑗−1) = 01 if ℎ 𝑗 < 𝑖

𝑡3𝑖𝑘+2(𝑗−1)𝑡3𝑖𝑘+2𝑗−1) = 11 if ℎ 𝑗 = 𝑖

▶ 𝑡𝑛 = ★ if 𝑛 < 3min or 𝑛 ≥ 3𝑘 +max.

Note that the single tape is thus split into words of length 3𝑘 in which
the first 2𝑘 symbols are split into pairs indicating whether the 𝑖-th head
can be found on the left (01) or the right (00) or at this position (11), and
the last 𝑘 symbols encode the values of the 𝑘 different tapes at the given
position.

The simulation is then defined by simulating each instruction by a
small 𝛼̃tm program and using these programs to interpret individual
edges. More precisely, one can define the interpretation of a program
𝑃 ∈ Programs(𝛼𝑘tm) with set of control states 𝑆𝑃 as the program 𝑃̃ with
set of control states 𝑆𝑃 × {𝑖 , 𝑠𝑟 , 𝑠𝑙 , 𝑢, 𝑏, 𝑏𝑟 , 𝑏𝑙} and defined by translating
each edge (inst, 𝑠 → 𝑠′) as a set of edges as follows5: 5: We suppose 𝑃 is atomic to ease the

proof, but extending to non atomic in-
structions does not involve any addi-
tional difficulties.

(left𝜌 , 𝑠 → 𝑠′) ↦→

(right2(𝜌−1) , (𝑠, 𝑖) → (𝑠, 𝑠𝑟)),
(right3𝑘 ◦ read0 , (𝑠, 𝑠𝑟) → (𝑠, 𝑠𝑟)),
(left3𝑘 ◦ read1 , (𝑠, 𝑠𝑟) → (𝑠, 𝑠𝑙)),
(read★, {(𝑠, 𝑠𝑟), (𝑠, 𝑠𝑟)} → (𝑠, 𝑢)),
(left2(𝜌−1) ◦ write★ ◦ left3𝑘 ◦ write1 , (𝑠, 𝑢) → (𝑠, 𝑏)),
(right3𝑘 ◦ read0 , {(𝑠, 𝑏), (𝑠, 𝑏𝑟)} → (𝑠, 𝑏𝑟)),
(left3𝑘 ◦ read1 , {(𝑠, 𝑏), (𝑠, 𝑏𝑙)} → (𝑠, 𝑏𝑙)),
(read★, {(𝑠, 𝑏), (𝑠, 𝑏𝑟), (𝑠, 𝑏𝑙)} → (𝑠′, 𝑖))


(right𝜌 , 𝑠 → 𝑠′) ↦→

(right2(𝜌−1) , (𝑠, 𝑖) → (𝑠, 𝑠𝑟)),
(right3𝑘 ◦ read0 , (𝑠, 𝑠𝑟) → (𝑠, 𝑠𝑟)),
(left3𝑘 ◦ read1 , (𝑠, 𝑠𝑟) → (𝑠, 𝑠𝑙)),
(read★, {(𝑠, 𝑠𝑟), (𝑠, 𝑠𝑟)} → (𝑠, 𝑢)),
(left2(𝜌−1) ◦ write★ ◦ right3𝑘 ◦ write0 , (𝑠, 𝑢) → (𝑠, 𝑏)),
(right3𝑘 ◦ read0 , {(𝑠, 𝑏), (𝑠, 𝑏𝑟)} → (𝑠, 𝑏𝑟)),
(left3𝑘 ◦ read1 , {(𝑠, 𝑏), (𝑠, 𝑏𝑙)} → (𝑠, 𝑏𝑙)),
(read★, {(𝑠, 𝑏), (𝑠, 𝑏𝑟), (𝑠, 𝑏𝑙)} → (𝑠′, 𝑖))


(read𝜌∗ , 𝑠 → 𝑠′) ↦→

(right2(𝜌−1) , (𝑠, 𝑖) → (𝑠, 𝑠𝑟)),
(right3𝑘 ◦ read0 , (𝑠, 𝑠𝑟) → (𝑠, 𝑠𝑟)),
(left3𝑘 ◦ read1 , (𝑠, 𝑠𝑟) → (𝑠, 𝑠𝑙)),
(read★, {(𝑠, 𝑠𝑟), (𝑠, 𝑠𝑟)} → (𝑠, 𝑢)),
(left2𝑘+𝜌−1 ◦ read∗ ◦ right2𝑘−𝜌 , (𝑠, 𝑢) → (𝑠, 𝑏)),
(right3𝑘 ◦ read0 , {(𝑠, 𝑏), (𝑠, 𝑏𝑟)} → (𝑠, 𝑏𝑟)),
(left3𝑘 ◦ read1 , {(𝑠, 𝑏), (𝑠, 𝑏𝑙)} → (𝑠, 𝑏𝑙)),
(read★, {(𝑠, 𝑏), (𝑠, 𝑏𝑟), (𝑠, 𝑏𝑙)} → (𝑠′, 𝑖))


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(write𝜌∗ , 𝑠 → 𝑠′) ↦→

(right2(𝜌−1) , (𝑠, 𝑖) → (𝑠, 𝑠𝑟)),
(right3𝑘 ◦ read0 , (𝑠, 𝑠𝑟) → (𝑠, 𝑠𝑟)),
(left3𝑘 ◦ read1 , (𝑠, 𝑠𝑟) → (𝑠, 𝑠𝑙)),
(read★, {(𝑠, 𝑠𝑟), (𝑠, 𝑠𝑟)} → (𝑠, 𝑢)),
(left2𝑘+𝜌−1 ◦ write∗ ◦ right2𝑘−𝜌 , (𝑠, 𝑢) → (𝑠, 𝑏)),
(right3𝑘 ◦ read0 , {(𝑠, 𝑏), (𝑠, 𝑏𝑟)} → (𝑠, 𝑏𝑟)),
(left3𝑘 ◦ read1 , {(𝑠, 𝑏), (𝑠, 𝑏𝑙)} → (𝑠, 𝑏𝑙)),
(read★, {(𝑠, 𝑏), (𝑠, 𝑏𝑟), (𝑠, 𝑏𝑙)} → (𝑠′, 𝑖))


It is then easy to verify that 𝑃̃ simulates 𝑃. Suppose given 𝑥 ∈ Xtm(2𝑘 )
and an edge (inst, 𝑠 → 𝑠′) in 𝑃. The computation (𝑥, 𝑠) inst→ (𝑥′, 𝑠′) is
simulated by the computation:

(𝜙(𝑥), 𝑠 , 𝑖) → · · · → (𝜙(𝑥′), 𝑠 , 𝑖)

whose length depends on ℎ𝜌 − ℎ1 (where 𝜌 denotes the tape on which
the instruction inst acts). R

Extensional equivalence

In the previous section we introduce program-wise intentional equiva-
lence, i.e. in some way an algorithmically complete notion of simulation: if a
program exists in the amc 𝛼, then some program in the amc 𝛽 simulates
it step by step. We now weaken this notion to only consider extensional
simulation: we only focus on the computed function (on X) computed by
𝛼-programs, dismissing how those are computed.

Definition 4.4.4 Let 𝛼 : 𝕄(𝐼) ↷ X and 𝛽 : 𝕄(𝐽) ↷ Y be amcs, and 𝜙
be an embedding X ↩→ Y. A program 𝑀 ∈ Programs(𝛼) is extensionally
simulated by a program 𝑁 ∈ Programs(𝛽) w.r.t. 𝜙 if 𝜙(Gr(𝑀)) ⊆ Gr(𝑁).
We denote note this by 𝑀 ≺ext

pw 𝑁 .

Definition 4.4.5 An amc 𝛼 : 𝕄(𝐼) ↷ X is program-wise extensionally
simulated by an amc 𝛽 : 𝕄(𝐽)↷ Y when there exists a space embedding X ↩→ Y
such that all 𝛼-programs 𝑀 ∈ Programs(𝛼) are extensionally simulated by a
𝛽-program. This is denoted by 𝛼 ≺ext

pw 𝛽.

The following result is straightforward and can be proved in a similar
way as Proposition 4.4.1

Proposition 4.4.6 If 𝛼 ≺ext
pw 𝛽 and 𝛽 ≺ext

pw 𝛾, then 𝛼 ≺ext
pw 𝛾.

Definition 4.4.6 An amc 𝛼 : 𝕄(𝐼)↷ X is extensionally equivalent to an
amc 𝛽 : 𝕄(𝐽) ↷ Y when 𝛼 program-wise extensionally simulates 𝛽 and 𝛽
program-wise extensionally simulates 𝛼.

Lemma 4.4.7 If 𝛼 program-wise intentionally simulates 𝛽, then 𝛼 program-wise
extensionally simulates 𝛽.

Proof. This result is a corollary of the fact that if a program 𝑃 ∈
Programs(𝛼) intentionally simulates a program 𝑄 ∈ Programs(𝛽), then
𝑃 extensionally simulates 𝛽. This is what we will prove now. Sup-
pose 𝑃 intentionally simulates 𝑄. Then there exists an embedding
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𝜙 : Y ↩→ X such that each computation of 𝑃 is mapped to a computa-
tion of 𝑄. Suppose now that (𝑥, 𝑥′) ∈ Gr(𝑃); by definition this means
that (𝑥′, terminal(𝑃)) ∈ [𝑃]𝜔 · ((𝑥, initial(𝑃))), i.e. there exists 𝑛 ∈ N
and O ∈ Orbits𝜔(𝑃; (𝑥, initial(𝑃))) such that O𝑘 = (𝑥′, terminal(𝑃)). But
since 𝑃 is intentionally simulated by 𝑄, there exists an orbit 𝜙{O} ∈
Orbits𝜔(𝑄; (𝑥, initial(𝑃))) and an injection 𝜄 : N→ N such that𝜙{O}𝜄(𝑛) =
(𝜙(𝑥′), terminal(𝑄)). This implies that (𝜙(𝑥), 𝜙(𝑥′)) ∈ Gr(𝑄). R

Proposition 4.4.8 If 𝛼 is program-wise extensionally simulated by 𝛽, then 𝛼 is
weakly reducible to 𝛽.

Proof. Suppose that 𝛼 is program-wise extensionally simulated by 𝛽.
I.e. there exists an embedding 𝜙 : X ↩→ Y such that for all all 𝑀 ∈
Programs(𝛼), there exists 𝑀̃ ∈ Programs(𝛽) with 𝜙(Gr(𝑀)) ⊆ Gr(𝑁).
But by Lemma 4.3.2, we have that

∪𝑀∈Programs(𝛼)Gr(𝑀) = P(𝛼).

Now, given (𝑥, 𝑦) ∈ P(𝛼), this implies that there exists 𝑀 ∈ Programs(𝛼)
such that (𝑥, 𝑦) ∈ Gr(𝑀). Now, this means that (𝜙(𝑥), 𝜙(𝑦)) ∈ Gr(𝑀̃).
But by Lemma 4.3.1, Gr(𝑀̃) ⊂ P(𝛽), hence (𝜙(𝑥), 𝜙(𝑦)) ∈ P(𝛽). Since
this is true for any (𝑥, 𝑦) ∈ P(𝛼), we have proved that 𝜙(P(𝛼)) ⊂ P(𝛽),
i.e. that 𝛼 is weakly reducible to 𝛽. R



Abstract data structures and
complexity 5.

5.1. Abstract data structures

One important aspect of computation, essential in the criticism of the
Church-Turing thesis1 is that most of the time the models are compared 1: I here understand the original Church-

Turing thesis, as most probably under-
stood originally. The question of if, and
rather when, the Church-Turing thesis
started being understood for other types
(e.g. higher functionals) is unclear to me
at this point. At least Kleene makes the
distinction in a paper [87].

over some data structure. We continue studying in this section additional
notions of equivalences between models of computation. The weakest of
those, namely extensional nat-equivalence, expresses the Church-Turing
thesis. The question of data representation will also be essential in the
definition of (specified) algorithms.

One can already find a notion of "abstract data type" in the literature.
However, this notion is not operational enough for our purposes, and we
will rather work with an abstraction of data structures: i.e. a set of values,
together with a set of allowed operations on those values. Underlying this
notion, one can identify a notion of data representation. We will therefore
define simultaneously two notions: that of data domain and that of data
structure, which subsumes a choice of data domain.

Definition 5.1.1 An abstract data domain D is a set 𝐷. An abstract data
structure D over an abstract data domain D is a set of allowed operations 𝑆D –
called structural maps – in

∑
𝑘,𝑘′ D𝑘 ⇀ D𝑘′ .

Any element 𝑠 ∈ 𝑆D belongs to D𝑘 ⇀ D𝑘′ for fixed values of 𝑘 and 𝑘′: we will
write dom(𝑠) = 𝑘 and im(𝑠) = 𝑘′.

The maximal arity of the abstract data structure D is defined as (by definition,
we consider that max 𝑆 = ∞ when the set 𝑆 is unbounded):

max{dom(𝑠), im(𝑠) | 𝑠 ∈ 𝑆D}.

We note that once again, we do not impose restrictions on the cardinality
of abstract data domains or on the cardinality of the set of allowed maps.
A particularly interesting case is when the latter is defined by induction
(Example 5.1.1). Similarly, in order to define a proper, usable, abstract
data structure one would require some maps relating the representations
of D𝑘 for various values of 𝑘. But on principle, we will not impose such
restrictions.

This notion is defined in a way which is quite similar to the definition of
abstract model of computation: we use partial maps to allow for reading.
For instance, a notion of integers with a test to zero could be represented
by the set N together with maps from N to {0, 1} but this would imply
the introduction of another data type (booleans), or a particular (ad-hoc)
choice of encoding of booleans as specific elements of the set N. Partial
functions avoid those by allowing to project on a subset; this can then be
used to implement any of these other approaches. But this choice allows
for self-contained definitions of data structures.

We will now give examples. We note that agreeing on a specific axiomati-
sation for a given data structure is a complex task, and in fact depends on
the expected use. As a consequence, the examples below are proposed
axiomatisations but could very well be replaced by others. We are not
trying to establish those as standard definitions, but rather illustrate how
one could manipulate the notion.
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Definition 5.1.2 (Abstract boolean) One can define an abstract data structure
representing booleans as follows: the underlying data domain is B = {0, 1},
with the structural maps read0, read1, and, and, and not defined as:

read0 :𝑛 ↦→ 𝑛 if and only if 𝑛 = 0
read1 :𝑛 ↦→ 𝑛 if and only if 𝑛 = 1
and :(𝑚, 𝑛) ↦→ 𝑚 × 𝑛
or :(𝑚, 𝑛) ↦→ 𝑚 + 𝑛 − 𝑚 × 𝑛
not :𝑛 ↦→ 1 − 𝑛.

The following definition captures the standard unary representation of
natural numbers, which was used in the early work on computability.

Definition 5.1.3 (Natural numbers) One can define an abstract data structure
representing natural numbers as follows: the underlying abstract data domain is
N = N, with the structural maps read0, read𝑆, succ defined by:

read0 :𝑛 ↦→ 𝑛 if and only if 𝑛 = 0
read𝑆 :𝑛 ↦→ 𝑛 if and only if 𝑛 ≠ 0
succ :𝑛 ↦→ 𝑛 + 1.

This data structure can be extended by other operations, such as predecessor,
addition and multiplication defined as:

pred :𝑛 ↦→ 𝑛 − 1 if and only if 𝑛 ≠ 0
add :(𝑛, 𝑚) ↦→ 𝑛 + 𝑚
mult :(𝑛, 𝑚) ↦→ 𝑛 × 𝑚.

The standard approach is however to represent integers in base 2. The
ability of representing integers in binary is particularly important when
considering computational complexity: due to the logarithmic factor
between an integer and the size of its binary representation (or its
representation in any base ≥ 2), the notion of polynomially bounded
running time do not correspond. This is due to the fact that operations
do not have the same cost: multiplying an integer 𝑛 by 2 in unary can
only be performed in time 𝑂(𝑛)while the same operation is performed
in time 𝑂(log 𝑛) in binary (or any other base ≥ 2).

Definition 5.1.4 (Binary lists, simply linked) One can define an abstract data
domain representing binary lists as the set L2 = {0, 1}|N|. We will write 𝜖 the
empty list.

This domain can be endowed with several data structures. One can initially
consider the set of structural maps R = {read0 , read1 , pop} where:

▶ read0 : L2 → L2 , 𝛼 ↦→ 𝛼 only if 𝛼0 = 0;
▶ read1 : L2 → L2 , 𝛼 ↦→ 𝛼 only if 𝛼0 = 1;
▶ pop : L2 → L2 , 𝛼 ↦→ 𝛼′ only if 𝛼 = 𝑎 · 𝛼′;

The data structure thus defined is that of simply linked read-only binary lists:
one can read each bit and go through the list from left to right, but no structural
map allows for accessing the previous bits.

One can modify the above set of structural maps by adding L =

{right, left} to get a data structure representing read-only2 doubly 2: In fact, a proper read-only variant
would disallow the pop instruction; here
the list can be modified by removing
elements, but adding new elements or
modifying values is impossible.

chained binary lists:
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Definition 5.1.5 (Binary lists, doubly linked) We define the datadomain as
L2 × L2. The instructions are then:

▶ read0 : L2 × L2 → L2 × L2 , (𝛼, 𝑏 · 𝛽) ↦→ (𝛼, 𝑏 · 𝛽) only if 𝑏 = 0;
▶ read1 : L2 × L2 → L2 × L2 , (𝛼, 𝑏 · 𝛽) ↦→ (𝛼, 𝑏 · 𝛽) only if 𝑏 = 1;
▶ left : L2 × L2 → L2 × L2 , (𝛼, 𝑎 · 𝛽) ↦→ (𝑎 · 𝛼′, 𝛽);
▶ right : L2 × L2 → L2 × L2 , (𝑎 · 𝛼, 𝛽) ↦→ (𝛼′, 𝑎 · 𝛽).
▶ pop : L2 × L2 → L2 × L2 , (𝛼, 𝑏 · 𝛽) ↦→ (𝛼, 𝛽′);

One can also extend the set of structural maps with W = {write0 , write1} to
allow for modifying the values of the list:

▶ write0 : L2 × L2 → L2 × L2 , (𝛼, 𝑏 · 𝛽 ↦→ (𝛼, 0 · 𝛽);
▶ write1 : L2 × L2 → L2 × L2 , (𝛼, 𝑏 · 𝛽) ↦→ (𝛼, 1 · 𝛽).

These different data structures arise naturally in different models of
computation: read-only simply chained lists quite naturally capture the
operations a standard automata can perform, while read-only doubly-
linked lists would be natural to consider for two-way automata as well as
in the geometry of interaction interpretation of the usual representation of
binary lists in lambda-calculus – corresponding to the logical formula (or a
translation in linear logic such as the one considered in subsection 11.2):

∀𝑋, (𝑋 ⇒ 𝑋) ⇒ (𝑋 ⇒ 𝑋) ⇒ (𝑋 ⇒ 𝑋).

We leave it to the reader to convince themselves that other abstract
structures quite standard in computability and complexity, such as trees
or graphs, give rise to abstract data structures in a natural way. We
however detail one essential example, that of recursive functions.

The notion of recursive function is sometimes considered as a model of
computation. My understanding is that it is not, because the definition of
recursive functions is abstracted from computation; it does not determine
computation, it only specifies what could be computed. As such, I consid-
ered for a while that it could be an example of a programming language.
But once again it is not a programming language because there are no
standard operational semantics associated to recursive functions; one
may implement the computation of a recursive function in very different
ways. This leads to thinking of the notion as something of a more algorith-
mic nature, separated from consideration on implementations. It finally
occurred to me that it was an example of an abstract data structure.

Example 5.1.1 (Recursive functions) Primitive and general recursive
functions are in our sense definitions of data structures. Indeed, one can
take as data domain 𝐷 = N together with a set of structural maps Rec.
One can then define Rec inductively as follows:

▶ Rec contains constant functions 𝑐𝑖 : N→ N for 𝑖 ∈ N;
▶ Rec contains successor function 𝑆 : N→ N;
▶ Rec contains projections Π𝑖

𝑘
: N𝑘 → N;

▶ Rec is closed under composition operators: for all 𝑖 ∈ N and
( 𝑓 , 𝑔) ∈ Rec such that dom( 𝑓 ) = 𝑘 ⩽ 𝑖 and dom(𝑔) = 𝑘′, there
exists 𝑔 ◦𝑖 𝑓 ∈ Rec such that:

𝑔 ◦𝑖 𝑓 (𝑥1 , . . . , 𝑥𝑖−1 , 𝑦1 , . . . , 𝑦𝑘′ , 𝑥𝑖+1 , . . . , 𝑥𝑘)
= 𝑓 (𝑥1 , . . . , 𝑥𝑖−1 , 𝑔(𝑦1 , . . . , 𝑦𝑘′), 𝑥𝑖+1 , . . . , 𝑥𝑘′);
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▶ Rec is closed under primitive recursion: for all ( 𝑓 , 𝑔) ∈ Rec such
that dom( 𝑓 ) = dom(𝑔) + 2, there exists 𝜌( 𝑓 , 𝑔) ∈ Rec such that
𝜌( 𝑓 , 𝑔)(𝑧, 𝑥1 , . . . , 𝑥dom( 𝑓 )) is equal to{
𝑓 (𝑥1 , . . . , 𝑥dom( 𝑓 )) if 𝑧 = 0
𝑔(𝑧′, 𝜌( 𝑓 , 𝑔)(𝑧′, 𝑥1 , . . . , 𝑥dom( 𝑓 )), 𝑥1 , . . . , 𝑥dom( 𝑓 )) if 𝑧 = 𝑆(𝑧′)

▶ (Only for general recursive) Rec is closed under minimisation: for
all 𝑓 ∈ Rec such that dom( 𝑓 ) > 1, there exists 𝜇( 𝑓 ) ∈ Rec such that

𝜇( 𝑓 )(𝑥2 , . . . , 𝑥dom( 𝑓 )) = 𝑧

⇔(
𝑓 (𝑧, 𝑥2 , . . . , 𝑥dom( 𝑓 )) = 0

)
∧

(
∀𝑥1 < 𝑧, 𝑓 (𝑥1 , . . . , 𝑥dom( 𝑓 )) ≠ 0

)
.

Remark 5.1.1 There are several consequences of this. First, it means that
Turing-completeness can be defined as the possibility to implement this
data-structure. Second, it provides a new point of view on algebraic
characterisation of complexity classes from Implicit complexity (icc),
such as the Bellantoni and Cook result [35]. Those can now be understood [35]: Bellantoni et al. (1992), A new

recursion-theoretic characterization of the
polytime functions

as defining abstract data structures that capture time- or space-bounded
computations, in the same way linear logic based techniques in icc
captures those same classes through types.

Obviously, this notion of data structure is independent of a chosen
machine model. To compute on data structures, one needs to implement
them. To be precise, one would have to account for the complexity of the
implementation, which could lead to overhead in time or space when
simulating programs from a model of computation into another. This
will be discussed later in this section.

Definition 5.1.6 Suppose given a model of computation 𝛼 : 𝕄(𝐼)↷ X, and
an abstract data domain D with maximal arity a. An interpretation of a data
domain D is a map

Δ : ∪𝑘≤a𝐷
𝑘 → X.

Notations 5.1.1. We establish some notations that will be useful in the
remaining parts of the chapter. For each sequence 𝑠 ∈ {0, 1,★}𝑛 , we write
★𝑠★ the configuration (𝑡𝑖)𝑖∈Z defined as 𝑡𝑖 = 𝑠𝑖 for 𝑖 = 0, 1, . . . , 𝑛 − 1.
Given two sequences 𝑠1 , 𝑠2, we also write 𝑠1 ★ 𝑠2 the concatenation of 𝑠1
and 𝑠2. Lastly, for each natural number 𝑛 we write 𝑛2 the sequence in
{0, 1} corresponding to its binary representation and 1𝑛 the sequence
consisting of 𝑛 occurrences of the symbol 1.

We also write shift𝑘(𝑥) the sequence 𝑥 shifted of 𝑘 positions to the left:
(shift𝑘(𝑥))𝑖 = 𝑥𝑖+𝑘 .

Example 5.1.2 (Interpretations of Booleans) We consider the Boolean data
structure defined above (Definition 5.1.2). Note that it is has maximal
arity 2. We can define the interpretation as follows:

ΔB : 𝑎 ∈ B ↦→ ★𝑎★
(𝑎, 𝑏) ∈ B2 ↦→ ★𝑎 ★ 𝑏★

Note that the data structure as defined there does not allow for compos-
ing functions. One could add a rule for defining new structural maps
by allowing for composition, i.e. defining the set of structural maps
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inductively by saying that if 𝑓 : D𝑛 → D and 𝑔 : D𝑚 → D are structural
maps, then 𝑔 ◦𝑖 𝑓 : D𝑚+𝑛−1 → D defined as

𝑔 ◦𝑖 𝑓 (𝑥1 , . . . , 𝑥𝑖−1 , 𝑦1 , . . . , 𝑦𝑚 , 𝑥𝑖+1 , . . . , 𝑥𝑛)
= 𝑔(𝑥1 , . . . , 𝑥𝑖−1 , 𝑓 (𝑦1 , . . . , 𝑦𝑚), 𝑥𝑖 , . . . , 𝑥𝑛),

is also a structural map. An interpretation of the underlying domain in
the Turing machines amc 𝛼tm for this extended data structure is given as
the following:

ΔB : (𝑎0 , 𝑎1 , . . . , 𝑎𝑛)★𝑎0 ★ 𝑎1 ★ · · ·★ 𝑎𝑛★

An interpretation of the abstract domain of booleans in the lambda-
calculus amc 𝛼𝜆(𝑆) for this extended data structure is given by

ΔB : 0 ↦→ 𝜆𝑥.𝜆𝑦.𝑦,

ΔB : 1 ↦→ 𝜆𝑥.𝜆𝑦.𝑥,

(𝑎0 , 𝑎1 , . . . , 𝑎𝑛) ↦→ 𝜆 𝑓 .(. . . ( 𝑓 )ΔB(𝑎0))ΔB(𝑎1)) . . .ΔB(𝑎𝑛).

Example 5.1.3 (Interpretations of natural numbers) One can define two
interpretations of the abstract domain of natural numbers in the Turing
machines amc 𝛼tm. given as the following:

ΔN : (𝑎0 , 𝑎1 , . . . , 𝑎𝑛) ↦→ ★1𝑎0 ★ 1𝑎1 ★ · · ·★ 1𝑎𝑛★

Δ
(2)
N : (𝑎0 , 𝑎1 , . . . , 𝑎𝑛) ↦→ ★𝑎0

2 ★ 𝑎1
2 ★ · · ·★ 𝑎𝑛2★

An interpretation of the abstract domain of booleans in the lambda-
calculus amc 𝛼𝜆(𝑆) is given by

ΔB : 0 ↦→ 𝜆𝑥.𝜆𝑦.𝑦,

ΔB : 1 ↦→ 𝜆𝑥.𝜆𝑦.𝑥,

(𝑎0 , 𝑎1 , . . . , 𝑎𝑛) ↦→ 𝜆 𝑓 .(. . . ( 𝑓 )ΔB(𝑎0))ΔB(𝑎1)) . . . )ΔB(𝑎𝑛).

Example 5.1.4 (Interpretations of binary lists) An interpretation of the
abstract domain of binary lists in the Turing machines amc 𝛼tm is given
as the following:

𝑠 = 𝑎0 , . . . , 𝑎𝑛 ↦→ ★𝑎0𝑎1 . . . 𝑎𝑛★

(𝑠1 , 𝑠2) = (𝑎0 , . . . , 𝑎𝑛 , 𝑏0 , . . . , 𝑏𝑚) ↦→ shift𝑛+1(★𝑎0𝑎1 . . . 𝑎𝑛𝑏0𝑏1 . . . 𝑏𝑚★)

Definition 5.1.7 Suppose given a model of computation 𝛼 : 𝕄(𝐼)↷ X, and
an abstract data structure D = (D, 𝑆𝐷). An implementation of D in 𝛼 is an
interpretation Δ of the underlying data domain D together with a map 𝛿 : 𝑆𝐷 →
Programs(𝛼) such that for all 𝑑 ∈ 𝐷𝑘 , ∃𝑛, 𝛿( 𝑓 )𝑛(Δ(𝑑)) = Δ( 𝑓 (𝑑)).

Example 5.1.5 (Implementations of Booleans) An implementation of the
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boolean data structure in the Turing machines amc 𝛼tm is given by:

and ↦→
{
(write1 · read0 , initial(𝑃) → terminal(𝑃)),
(write0 · read1 , initial(𝑃) → terminal(𝑃))

}
,

and ↦→


(write★ · read0 , initial(𝑃) → 𝑒),
(right2 · write★ · read1 , initial(𝑃) → terminal(𝑃)

(write0 · left2 , 𝑒 → terminal(𝑃)))

 ,
or ↦→


(write★ · read1 , initial(𝑃) → 𝑒),

(right2 · write★ · read0 , initial(𝑃) → terminal(𝑃)
(write1 · left2 , 𝑒 → terminal(𝑃)))

 .
An implementation of booleans in lambda-calculus (Example 3.2.13) is
given by the following. We use the notation fst(𝑎) = (𝑎)𝜆𝑥.𝜆𝑦.𝑥 and
scd(𝑎) = (𝑎)𝜆𝑥.𝜆𝑦.𝑦.

and ↦→ 𝜆𝑎.((fst𝑎)scd(𝑎))𝜆𝑥.𝜆𝑦.𝑦,
or ↦→ 𝜆𝑎.(fst𝑎)scd(𝑎),

not ↦→ 𝜆𝑎.𝜆𝑥.𝜆𝑦.((𝑎)𝑦)𝑥.

It is a standard exercise to check that these terms interpret the structural
maps considered in Definition 5.1.2..

We leave it as an exercise to define implementations of integers in the
amc 𝛼tm of Turing machines (w.r.t. the two interpretations described in
), as well as in the amc of lambda-calculus. This allows us to skip those
and directly detail implementations of binary lists.

Example 5.1.6 (Implementations of simply linked binary lists) We detail
the implementation of simply linked binary lists in the amc 𝛼fa of
finite automata () w.r.t. the interpretation of the data domain shown in
Definition 5.1.4.

read0 ↦→
{
(read0 , initial(𝑃) → terminal(𝑃))

}
,

read1 ↦→
{
(read1 , initial(𝑃) → terminal(𝑃))

}
,

pop ↦→
{
(right, initial(𝑃) → terminal(𝑃))

}
,

Example 5.1.7 (Implementations of doubly linked binary lists) We detail
the implementation of binary lists in the amc 𝛼tm w.r.t. the interpretation
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of the data domain shown in Example 5.1.4.

read0 ↦→
{
(read0 , initial(𝑃) → terminal(𝑃))

}
,

read1 ↦→
{
(read1 , initial(𝑃) → terminal(𝑃))

}
,

left ↦→
{
(left, initial(𝑃) → terminal(𝑃))

}
,

right ↦→
{
(right, initial(𝑃) → terminal(𝑃))

}
,

write0 ↦→
{
(write0 , initial(𝑃) → terminal(𝑃))

}
,

write1 ↦→
{
(write1 , initial(𝑃) → terminal(𝑃))

}
,

pop ↦→



(right · write★, initial(𝑃) → 𝑟),
(right · read0 , 𝑟 → 𝑟),
(right · read1 , 𝑟 → 𝑟),
(left · read𝑠𝑡𝑎𝑟 , 𝑟 → 𝑙),

(left · write★ · read1 , 𝑙 → 𝑙1),
(left · write★ · read0 , 𝑙 → 𝑙0),
(left · write1 · read1 , 𝑙1→ 𝑙1),
(left · write1 · read0 , 𝑙1→ 𝑙0),
(left · write0 · read1 , 𝑙0→ 𝑙1),
(left · write0 · read0 , 𝑙0→ 𝑙0),
(write0 · read★, 𝑙0→ terminal(𝑃)),
(write1 · read★, 𝑙1→ terminal(𝑃))



.

5.2. Data-constrained Equivalences

Definition 5.2.1 Let 𝛼 : 𝕄(𝐼)↷ X be an abstract model of computation, and
D1 ,D2 be abstract data domain respectively interpreted by Δ1 and Δ2 in 𝛼. A
program 𝑃 ∈ Programs(𝛼) is a Δ1 → Δ2-program when for all 𝑑1 ∈ D1,

(𝑑, terminal(𝑃)) ∈ [𝑃]𝜔 · ((Δ1(𝑑1), initial(𝑃))) ⇒ 𝑑 ∈ Δ2(D2).

We write ProgramsΔ1→Δ2(𝛼) the set of allΔ1 → Δ2-programs in Programs(𝛼),
and ProgramsΔ1→Δ2

𝑇
(𝛼) the set of all terminating programs in ProgramsΔ1→Δ2(𝛼).

Definition 5.2.2 Let 𝛼 : 𝕄(𝐼)↷ X and 𝛽 : 𝕄(𝐽)↷ Y be abstract models of
computation, D and D′ be abstract data domains, and Δ and Δ′ (resp. Θ and
Θ′) be interpretations of D and D′ in 𝛼 (resp. 𝛽). We say that 𝛼 program-wise
D → D′-intentionally simulates 𝛽 (w.r.t. Δ,Δ′,Θ,Θ′) when there exists an
embedding 𝜙 : Y ↩→ X such that for all 𝑄 ∈ ProgramsΘ→Θ′(𝛽) there exists
𝑃 ∈ ProgramsΔ→Δ′(𝛼) that extensionally simulates 𝑄.

Proposition 5.2.1 Suppose an amc 𝛼 program-wise intentionally simulates
an amc 𝛽. For all interpretations Θ,Θ′ of the data domains D,D′ in Y, there
exists interpretations Δ,Δ′ of D,D′ in X such that 𝛼 program-wise D→ D′-
intentionally simulates 𝛽 (w.r.t. Δ,Δ′,Θ,Θ′).

Proof. The key element here is that if 𝛼 program-wise intentionally
simulates 𝛽 through a map 𝜙 : Y → X, then interpretations Θ,Θ′ of
the data domains D and D′ yield interpretations of D and D′ in X
through Δ = 𝜙 ◦ Θ and Δ′ = 𝜙 ◦ Θ. Showing that 𝛼 program-wise
D → D′-intentionally simulates 𝛽 is then straightforward since all
𝑄 ∈ Programs(𝛽) is intentionally simulated by a 𝑃 ∈ Programs(𝛼), and
this implies that if (Θ′(𝑑′), terminal(𝑄)) ∈ [𝑄]𝜔 · ((Θ(𝑑), initial(𝑄))),
then (𝜙 ◦Θ′(𝑑′), terminal(𝑃)) ∈ [𝑃]𝜔 · ((𝜙 ◦Θ(𝑑), initial(𝑃))). That is, if
𝑄 ∈ ProgramsΘ→Θ′(𝛽) then 𝑃 ∈ ProgramsΔ→Δ′(𝛼). R
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We can obviously define an equivalent extensional notion and prove
similar results.

Definition 5.2.3 Let 𝛼 : 𝕄(𝐼)↷ X and 𝛽 : 𝕄(𝐽)↷ Y be abstract models of
computation, D and D′ be abstract data domains, and Δ and Δ′ (resp. Θ and
Θ′) be interpretations of D and D′ in 𝛼 (resp. 𝛽). We say that 𝛼 program-wise
D → D′-intentionally simulates 𝛽 (w.r.t. Δ,Δ′,Θ,Θ′) when there exists an
embedding 𝜙 : Y ↩→ X such that for all 𝑄 ∈ ProgramsΘ→Θ′(𝛽) there exists
𝑃 ∈ ProgramsΔ→Δ′(𝛼) that extensionally simulates 𝑄.

Proposition 5.2.2 Suppose an amc 𝛼 program-wise extensionally simulates
an amc 𝛽. For all interpretations Θ,Θ′ of the data domains D,D′ in Y, there
exists interpretations Δ,Δ′ of D,D′ in X such that 𝛼 program-wise D→ D′-
extensionally simulates 𝛽 (w.r.t. Δ,Δ′,Θ,Θ′).

Proof. The proof is similar to that of Proposition 5.2.1. Writing 𝜙 : Y ↩→ X
the embedding supporting the program-wise extensional simulation of
𝛽 by 𝛼, we can define Δ = 𝜙 ◦ Θ and Δ′ = 𝜙 ◦ Θ′. We then have that
if 𝑄 ∈ Programs(𝛽) is intentionally simulated by 𝑃 ∈ Programs(𝛼) and
𝑄 ∈ ProgramsΘ→Θ′(𝛽), then 𝑃 ∈ ProgramsΔ→Δ′(𝛼). R

Proposition 5.2.3 For fixed data domains and interpretations, program-wise
D → D′-intentional simulation implies program-wise D → D′-extensional
simulation.

Proof. Suppose 𝛼 : 𝕄(𝐼) ↷ X program-wise D → D′-intentionally
simulates 𝛽 : 𝕄(𝐽)↷ Y w.r.t. Δ,Δ′,Θ,Θ′ and 𝜙 : Y→ X. Then for all
program 𝑄 ∈ ProgramsΘ→Θ′(𝛽), there exists 𝑃 ∈ ProgramsΔ→Δ′(𝛼) that
intentionally simulates it. But this implies that 𝑃 extensionally simulates
𝑄 by Definition 4.4.5. R

5.3. A bit of history

Recall that the Church-Turing thesis states that the set of effectively com-
putable functions3 (which is an informal notion) is equal to the set of 3: Here I believe the original statements

considered only functions from natural
numbers to natural numbers, although
some extensions were considered later
on [87].

functions computable by Turing machines (or equivalently, are com-
putable in lambda-calculus). A forceful argument for the Church-Turing
thesis is that the following sets of functions (on natural numbers) are
equal:

▶ functions computed by Turing machines;
▶ general recursive functions;
▶ lambda-definable functions.

It is interesting to dive into the research work of the time to understand
which results are proven exactly. It turns out that the above equivalence
is, from a purely formal point of view, not properly established. We are
obviously not putting the result into question, but if we reformulate
the exact statements of theorem proven in these papers, we obtain the
following:
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▶ In his 1937 paper (Computability and𝜆-Definability), Turing shows4 4: Although he writes "No attempt is be-
ing made to give a formal proof that this
machine has the properties claimed for
it. Such a formal proof is not possible un-
less the ideas of substitution and so forth
occurring in the definition of conversion
are formally defined, and the best form
of such a definition is possibly in terms
of machines".

that if 𝑓 is a lambda-definable function (on Church numerals), then
there exists a Turing Machine whose output is the sequence

11 . . . 1︸ ︷︷ ︸
𝑓 (0) symbols

0 11 . . . 1︸ ︷︷ ︸
𝑓 (1) symbols

0 . . . 0 11 . . . 1︸ ︷︷ ︸
𝑓 (𝑛) symbols

0 . . .

▶ In the same paper, Turing also shows that if there exists a Turing
Machine whose output is the sequence above, then 𝑓 is general
recursive. This is done by means of an encoding of configurations
as integers.

▶ In his 1936 paper (𝜆-definability and recursiveness), Kleene shows
that every general recursive function is 𝜆-definable using a shifted
version of Church numerals, in which 0 is represented as 1, 2 repre-
sented as 3, etc.

The representation of computable functions by Turing shows that the
equivalence considered is based on unary representations of integers.
Moreover, the choice in the definition of what a computable function is
leaves open the question of the representation of partial functions. Indeed,
the result applies only to total functions5. Lastly, one should notice that 5: This shows that, even though Turing

knows that Turing machines compute
partial functions, his notion of computable
function presupposes totality.

Kleene uses a different interpretation of (unary) natural numbers.

We will not detail here how the following results can be proved. However,
these results can be restated as6: 6: Although binary representations are

not considered in these papers, it is easily
obtained in a similar manner▶ Lambda-calculus interprets the data structure of partial recur-

sive functions (and can interpret it for both a unary and binary
representation of the underlying data domain);

▶ Turing machines interpret the data structure of partial recursive
functions (and can interpret it for both a unary and binary repre-
sentation of the underlying data domain);

▶ One can encode the elements of Xtm as natural numbers and show
that, based on this encoding, each instruction is interpreted as a
partial recursive function;

▶ One can encode the elements of Λ as natural numbers and show
that, based on this encoding, that a step of 𝛽-reduction is interpreted
as a partial recursive function.

Based on the encoding of configurations, one can obtain a simulation of
lambda-calculus by Turing machines (and conversely). This simulation is
a data-constrained program-wise simulation, which means that the above
results could be used as an algorithmic Church-Turing thesis, namely
that7 the set of effective methods to compute functions is equal to the set of 7: Here we restrict the discussion to func-

tions from natural numbers to natural
numbers for simplicity.

Turing machines (computing functions).

We note however that this alternative statement does not account for
complexity. Indeed, the quantitative aspects of the simulations above
imply that time and space constrained (especially for ‘small’ classes)
effective methods do not coincide.

5.4. Configuration complexity

We will now discuss how to formalise space and time complexity, al-
though the notion of space complexity will in fact not necessarily be
related to space but rather abstractly captures any notion of size of
configurations. This will be simply represented as a map from the space
of configuration to the natural numbers8. For this reason, we chose the 8: This restriction is somehow ad-hoc,

and could be replaced with any totally
ordered semi-ring, but we will not con-
sider any examples in which another
codomain is needed.
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terminology configuration complexity that seems more adequate as it does
not refer to a notion of ‘space’.

Definition 5.4.1 Let 𝛼 : 𝕄(𝐼)↷ X be an amc. A configuration cost model
is a map 𝑐 : X→ N.

Suppose given an abstract machine 𝑀, a pair (𝑥, 𝑠) ∈ X × 𝑆𝑀 , and an
orbit 𝑂 = (𝑥𝑖 , 𝑠𝑖)𝑛𝑖=1 ∈ Orbits𝑛(𝑀; (𝑥, 𝑠)). One defines the configuration
complexity of the orbit 𝑂 as the quantity 𝑐(𝑂) = max(𝑥,𝑠)∈𝑂 𝑐(𝑥).

Example 5.4.1 One can define the following size measures on the model
of Turing machines. The first one simply counts the number of symbols
equal to 0 and 1, while the second measures the length between the
leftmost and the rightmost symbols different from ★.

𝑠0 :(𝑠𝑖)𝑖∈Z ↦→ Card({𝑖 | 𝑠𝑖 ≠ ★}),
𝑠1 :(𝑠𝑖)𝑖∈Z ↦→ min{len(𝑤) | 𝑤 ∈ {0, 1,★}∗ , (𝑠𝑖) = ★𝜔𝑤★𝜔}.

Note that 𝑠0 ⩽ 𝑠1, but there is no constant 𝐶 such that 𝑠1 ⩽ 𝐶 × 𝑠0. In fact,
the two size measures are not equivalent, and while 𝑠1 corresponds to the
usual notion of space complexity, 𝑠0 allows for computing non-regular
langages in constant space.

We are now able to define configuration complexity classes in a natural
way. For this, we introduce the following notation, where 𝑐 is a configu-
ration cost function on an amc 𝛼, 𝑃 is a program in Programs(𝛼), and 𝑓
is a function N→ N:

BdC(𝑥, 𝑃, 𝑐, 𝑓 ) ⇔ ∀O ∈ Orbits𝜔(𝑃; 𝑥, initial(𝑃)), 𝑐(O) = 𝑂( 𝑓 (𝑐(𝑥))).

Definition 5.4.2 Let 𝛼 be an amc, 𝑐 a configuration cost function, and let
𝑓 : N→ N be any function. We define the following sets:

Conf𝛼,𝑐( 𝑓 ) = {𝑃 ∈ Programs(𝛼) | ∀𝑥 ∈ X, BdC(𝑥, 𝑃, 𝑐, 𝑓 )}

We also define the following set for all abstract domains D and D′, respectively
interpreted by Δ and Δ′ in 𝛼:

ConfΔ→Δ′
𝛼,𝑐 ( 𝑓 ) = {𝑃 ∈ ProgramsΔ→Δ′(𝛼) | ∀𝑑 ∈ D, BdC(Δ(𝑑), 𝑃, 𝑐, 𝑓 )}.

This leads to the definition of the corresponding data configuration cost class:

ConfΔ→Δ′
𝛼,𝑐 ( 𝑓 ) = {(Δ × Δ′)−1(Gr(𝑃)) | 𝑃 ∈ ConfΔ→Δ′

𝛼,𝑐 ( 𝑓 )}.

The above definition induces

Remark 5.4.1 Given a configuration cost function 𝑐 and an interpretation
Δ of an abstract data domain D, one can define a measure 𝑐D on D by
defining 𝑐D(𝑑) = 𝑐(Δ(𝑑)). If one considers the measure 𝑠1 defined above,
the induced measure on binary lists corresponds to the usual measure
considered on integers (represented as binary lists) when studying
complexity in the setting of Turing machines.

Example 5.4.2 To show this with a simple example, we consider a variant
of the amc 𝛼tm in which the input (resp. output) is given on a separate
read-only (resp. write only) tape:

Xsublin
tm = Xtm × Xtm × Xtm.
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We write elements of this space as triples (𝑠𝑖 , 𝑠𝑤 , 𝑠𝑜) for the input, work,
and output tapes respectively. The instructions are given as:

▶ right𝑖(𝑠𝑖 , 𝑠𝑤 , 𝑠𝑜) = (𝛼tm(right)(𝑠𝑖), 𝑠𝑤 , 𝑠𝑜);
▶ right𝑤(𝑠𝑖 , 𝑠𝑤 , 𝑠𝑜) = (𝑠𝑖 , 𝛼tm(right)(𝑠𝑤), 𝑠𝑜);
▶ right𝑜(𝑠𝑖 , 𝑠𝑤 , 𝑠𝑜) = (𝑠𝑖 , 𝑠𝑤 , 𝛼tm(right)(𝑠𝑜));
▶ left𝑖(𝑠𝑖 , 𝑠𝑤 , 𝑠𝑜) = (𝛼tm(left)(𝑠𝑖), 𝑠𝑤 , 𝑠𝑜);
▶ left𝑤(𝑠𝑖 , 𝑠𝑤 , 𝑠𝑜) = (𝑠𝑖 , 𝛼tm(left)(𝑠𝑤), 𝑠𝑜);
▶ left𝑜(𝑠𝑖 , 𝑠𝑤 , 𝑠𝑜) = (𝑠𝑖 , 𝑠𝑤 , 𝛼tm(left)(𝑠𝑜));
▶ read𝑖∗(𝑠𝑖 , 𝑠𝑤 , 𝑠𝑜) = (𝛼tm(read∗)(𝑠𝑖), 𝑠𝑤 , 𝑠𝑜);
▶ read𝑤∗ (𝑠𝑖 , 𝑠𝑤 , 𝑠𝑜) = (𝑠𝑖 , 𝛼tm(read∗)(𝑠𝑤), 𝑠𝑜);
▶ write𝑤∗ (𝑠𝑖 , 𝑠𝑤 , 𝑠𝑜) = (𝑠𝑖 , 𝛼tm(write∗)(𝑠𝑤), 𝑠𝑜);
▶ write𝑜∗ (𝑠𝑖 , 𝑠𝑤 , 𝑠𝑜) = (𝑠𝑖 , 𝑠𝑤 , 𝛼tm(write∗)(𝑠𝑜)).

We then define the configuration cost models 𝑠0 and 𝑠1 defined as:

𝑠0(𝑠𝑖 , 𝑠𝑤 , 𝑠𝑜) = 𝑠0(𝑠𝑤)𝑠1(𝑠𝑖 , 𝑠𝑤 , 𝑠𝑜) = 𝑠1(𝑠𝑤).

We leave it to the reader to convince themselves that the amc 𝛼sublin
tm

together with the configuration cost model 𝑠1 captures the usual notion
of space complexity for Turing machines with one working tape. In
particular, the notion of Logspace computation is captured by those
machines whose orbits have 𝑠1 measure at most logarithmic in the size
of the input (a more formal definition is given in the next section).

But now, one can consider the following program that decides whether
the input is a palindrome. We will consider that the program moves the
pointers for the input and working tape simultaneously (hence "moving
one step to the right" means applying both right𝑖 and right𝑤). The
program goes as follows:

1. The program looks at the symbol 𝑏 on the working tape: if it is 0
it accepts (it writes 1 on the output state and reaches the terminal
state), otherwise it reads the symbol 𝑎 on the input tape, remembers
its value (as part of the control state), and write 1 on the working
tape (at the position of 𝑎);

2. The program moves to the right until it reads a 0 on the working
tape or a ★ on the input tape, if it read a 0 on the working tape, it
writes a★ to replace it and moves back one step to the left, if it read
a ★ on the input tape it simply goes back one step to the left

3. It reads the symbol on the working tape: if it is a 1 the program
accepts, otherwise it reads the symbol on the input tape; if this
symbol is different from 𝑎, the program rejects (i.e. writes 0 on the
output tape and reaches the terminal state), otherwise it writes a 0
on the working tape;

4. The program moves left until it reads a 1 on the working tape,
writes a ∗ in its place and moves one step to the right, and goes
back to step 1.

One can verify that the 𝑠0 function on configurations the program goes
through during computation is always at most 2: there is at most one
symbol 1 and one symbol 0 which denote the position of the last bits of
the input checked. Hence the program works in constant configuration
cost! (On the other hand, the configuration cost for 𝑠1 of the orbits is
equal, at some point, to the length of the input.) But this is incoherent
with what standard complexity tells us: since the palindrome language is
non-regular, it cannot be computed by a machine working in 𝑜(log log 𝑛)
[88]. [88]: Lewis et al. (1965), Memory bounds

for recognition of context-free and context-
sensitive languages
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5.5. Transition complexity

The notion of time complexity is also abstracted in a way that will allow
for other interpretations, such as energy consumption. As a consequence,
I chose to use the terminology transition complexity. The natural idea
is that the orbit length corresponds to time complexity. However, one
may want to consider non-trivial measures, for which an instruction may
have a non-unital time complexity, or a complexity that depends on the
configuration.

The natural definition is then to fix a cost for each instruction in 𝐼 and
then deduce the cost of arbitrary sequences. The definition is somehow
straightforward: if 𝑚, 𝑛 are two instructions, then the cost 𝑡(𝑚𝑛, 𝑥) of
performing 𝑚𝑛 on configuration 𝑥 – i.e. performing the instruction 𝑛 on
𝑥 and then applying 𝑚 to the result – should be equal to the sum of the
cost of performing 𝑛 on 𝑥, i.e. 𝑡(𝑛, 𝑥), and the cost of performing 𝑚 on
𝑛 · 𝑥, i.e. 𝑡(𝑚, 𝑛 · 𝑥). This is formalised as a so-called logarithmic chain rule
whose name is explained below.

Definition 5.5.1 Let 𝛼 : 𝕄(𝐼)↷ X be an amc. A transition cost model for
𝛼 is a function 𝑡 : 𝐼 × X→ N. This is extended to 𝕄(𝐼) by a logarithmic chain
rule:

𝑡(𝑚𝑛, 𝑥) = 𝑡(𝑚, 𝑛 · 𝑥) + 𝑡(𝑛, 𝑥).

Let now 𝑀 be an abstract machine and 𝑥 a configuration. The transition
complexity of the length 𝑘 orbit

O = (𝑥0 , 𝑠0)
𝑚1×𝜎1→ (𝑥1 , 𝑠1) → . . .

𝑚𝑘×𝜎𝑘→ (𝑥𝑘 , 𝑠𝑘) ∈ Orbits𝑘(𝑀; (𝑥0 , 𝑠0))

is defined as 𝑡(O) = ∑𝑘
𝑖=1 𝑡(𝑚𝑖−1 , 𝑥𝑖).

We notice that cost models do act like logarithms of differential operators.
Indeed, writing 𝐷𝑥 = exp(𝑡(_, 𝑥)) for a cost model 𝑡 and 𝑓 = 𝛼(𝑛),
𝑔 = 𝛼(𝑚), the logarithmic chain rule we have written becomes:

𝐷𝑥(𝑔 ◦ 𝑓 ) = 𝐷 𝑓 (𝑥)(𝑔) × 𝐷𝑥( 𝑓 ).

Whether this remark can be used further remains to be seen. Let us simply
notice that some complexity measures defined to prove lower bounds
on algebraic models of computation are based on partial derivatives [89,
90]. [89]: Baur et al. (1983), The complexity of

partial derivatives
[90]: Chen et al. (2011), Partial Derivatives
in Arithmetic Complexity and Beyond

As for the case of configuration cost functions, we can define classes
of programs and functions whose transition cost is bounded. For this
definition to make sense, we will however require both a transition cost
function and a configuration cost function. Given 𝑐 and 𝑡 configuration
and transition costs functions on an amc 𝛼, 𝑃 a program in Programs(𝛼),
and 𝑓 any function N→ N, we define:

BdT(𝑥, 𝑃, 𝑐, 𝑡 , 𝑓 ) ⇔ ∀O ∈ Orbits𝑇(𝑃; 𝜔)(𝑥, initial(𝑃)), 𝑡(O) = 𝑂( 𝑓 (𝑐(𝑥))).

Definition 5.5.2 Let 𝛼 be an amc, 𝑐 a configuration cost function, 𝑡 a transition
cost function, and let 𝑓 : N→ N be any function. We define the following sets:

Trans𝛼,𝑐,𝑡( 𝑓 ) = {𝑃 ∈ Programs𝑇(𝛼) | ∀𝑥 ∈ X, BdT(𝑥, 𝑃, 𝑐, 𝑡 , 𝑓 )}
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We also define the following set for all abstract domains D and D′, respectively
interpreted by Δ and Δ′ in 𝛼:

TransΔ→Δ′
𝛼,𝑐,𝑡 ( 𝑓 ) = {𝑃 ∈ ProgramsΔ→Δ′

𝑇 (𝛼) | ∀𝑑 ∈ D, BdT(Δ(𝑑), 𝑃, 𝑐, 𝑡 , 𝑓 )}.

This leads to the definition of the corresponding data configuration cost function
class:

TransΔ→Δ′
𝛼,𝑐,𝑡 ( 𝑓 ) = {(Δ × Δ′)−1(Gr(𝑃)) | 𝑃 ∈ ConfΔ→Δ′

𝛼,𝑐,𝑡 ( 𝑓 )}.

In the Turing machine models, the standard transition cost model 𝑡1 –
corresponding to the usual time complexity measure – is defined by

𝑡1(read0) = 𝑡1(read1) = 𝑡1(read★) = 0
𝑡1(write0) = 𝑡1(write1) = 𝑡1(write★) = 1

𝑡1(left) = 𝑡1(right) = 1.

Together with the standard configuration cost 𝑠1 (discussed in the previ-
ous section), this allows to define standard complexity classes using the
interpretations of integers and booleans (Example 2 and Example 5.1.2),
e.g.

Ptime = ∪𝑘TransΔ
(2)
N→ΔB

𝛼tm ,𝑠1 ,𝑡1
(𝑥 ↦→ 𝑥𝑘)

FPtime = ∪𝑘TransΔ
(2)
N→Δ

(2)
N

𝛼tm ,𝑠1 ,𝑡1
(𝑥 ↦→ 𝑥𝑘)

Remark 5.5.1 The two notions of configuration and transition cost models
are in fact instances of a single notion of cost model, where a cost model
is a function 𝑐 from 𝐼 × X to some monoid (Ω,+) and satisfying the
logarithmic chain rule (w.r.t. the monoid operation). Taking (Ω,+) yields
the notion of transition cost model introduced above, while configuration
costs models are recovered by taking (Ω,max) and considering that the
function 𝑐 does not depend on 𝐼.

5.6. Quantitative equivalences

A quantitative model of computation (qmc) is an abstract amc together
with both a configuration 𝑐𝛼 and a transition cost model 𝑡𝛼. We can
define the quantitative overheads of a simulation of a qmc 𝛽 by a qmc 𝛼
as follows.

Definition 5.6.1 Suppose 𝛼 and 𝛽 are qmcs such that 𝛽 simulates 𝛼 as amcs
with respect to the space embedding 𝜙 : X ↩→ Y and the map 𝜃 : 𝐼 ↦→ 𝕄(𝐽),
and let 𝑔 be a function N → N. We say that 𝛽 simulates 𝛼 in 𝑔-bounded
configuration cost expansion when

𝑐𝛽(𝜙(𝑥)) ⩽ 𝑔(𝑐𝛼(𝑥)).

Similarly, we say that 𝛽 simulates 𝛼 in 𝑔-bounded transition cost expansion
when

𝑡𝛽(𝜃(𝜄), 𝜙(𝑥)) ⩽ 𝑔(𝑡𝛼(𝜄, 𝑥)).

We will now prove some results explaining how complexity classes
defined in different qmcs can be related when the simulation has bounded
configuration ratio and/or transition ratio. It however appears that to



5. Abstract data structures and complexity 73

be able to relate the notions in this way, it is required to have a common
notion of cost for the data. For this, we consider two qmc 𝛼 and 𝛽, where
𝛼 is simulated by 𝛽, together with abstract data domains D and D′ and
respective interpretations Δ,Δ′,Θ,Θ′. To relate the classes ConfΔ→Θ

𝛼,𝑐𝛼 ( 𝑓 )
and ConfΔ

′→Θ′

𝛽,𝑐𝛽
( 𝑓 ), we will moreover assume that:

∀𝑑 ∈ D, 𝑐𝛼(Δ(𝑑)) = 𝑐𝛽(Δ′(𝑑)).

Proposition 5.6.1 Suppose we are in the situation just described and that
𝑔 : N→ N is an increasing function, i.e. satisfying 𝑔(max 𝑆) = max 𝑔(𝑆).
Then for all function 𝑓 : N→ N, we have:

ConfΔ→Θ
𝛼,𝑐𝛼 ( 𝑓 ) ⊆ ConfΔ

′→Θ′

𝛽,𝑐𝛽
(𝑔 ◦ 𝑓 ).

Proof. Consider 𝑃 ∈ Conf𝛼,𝑐𝛼 ( 𝑓 ) and the program 𝑃̃ simulating 𝑃. This
program is defined by replacing each instruction 𝜄 ∈ 𝐼 by 𝜃(𝜄) ∈ 𝐽. I.e.
the image of the orbit O ∈ Orbits𝜔(𝑃; (𝑥, initial(𝑃)))with

O = (𝑥0 , 𝑠0)
𝜄0→ (𝑥1 , 𝑠1)

𝜄1→ . . .
𝜄𝑛−1→ (𝑥𝑛 , 𝑠𝑛)

𝜄𝑛→ . . . ,

through this simulation is O′ which consists in the sequence

(𝜙(𝑥0), 𝑠0)
𝜃(𝜄0)→ (𝜙(𝑥1), 𝑠1)

𝜃(𝜄1)→ . . .
𝜃(𝜄𝑛−1)→ (𝜙(𝑥𝑛), 𝑠𝑛)

𝜃(𝜄𝑛 )→ . . . .

We now compute the configuration cost of O′:

𝑐𝛽(O′) = max
𝑖
𝑐𝛽(𝜙(𝑥𝑖))

⩽ max
𝑖
𝑔(𝑐𝛼(𝑥𝑖))

⩽ 𝑔(max
𝑖
𝑐𝛼(𝑥𝑖))

⩽ 𝑔(𝑐𝛼(O)).

Now, since 𝑃 satisfied that 𝑐𝛼(O) = 𝑂( 𝑓 (𝑐𝛼(𝑥))), this gives 𝑐𝛽(O′) =
𝑂(𝑔( 𝑓 (𝑐𝛼(𝑥)))). If one restricts to configurations 𝑥 = Δ(𝑑) for a 𝑑 ∈ D,
then using the fact that 𝑐𝛼(Δ(𝑑)) = 𝑐𝛽(Δ′(𝑑)), we deduce that:

𝑐𝛽(O′) = 𝑂(𝑔( 𝑓 (𝑐𝛽(Δ′(𝑑))))),

which means that 𝑃̃ belongs to Conf𝛽,𝑐𝛽 (𝑔 ◦ 𝑓 ). R

Remark 5.6.1 The previous proof works if one considers that intermediate
configurations are not considered when computing the configuration
cost of an orbit in which some transitions are non-atomic. If one were
to consider only atomic graphings (a more satisfactory way of dealing
with the complexity of a simulation), then additional considerations
should be taken into account. In particular, one could use the fact that
an atomic instruction can increase the configuration cost of at most 1
(this is the case for Turing machines for instance), hence intermediate
configurations appearing when applying 𝜃(𝑖) on configuration 𝑥 have
their configuration cost bounded by 𝑥 + deg(𝜃(𝑖)) (where deg(·) denotes
the algebraic degree of the simulation as defined in Definition 3.3.3).

Proposition 5.6.2 Suppose we are in the situation of the previous proposition
and that 𝑔 : N→ N is a convex function, i.e. satisfying

∑
𝑖 𝑔(𝑠𝑖) ⩽ 𝑔(∑𝑖 𝑠𝑖).
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Then for all function 𝑓 : N→ N, we have:

TransΔ→Θ
𝛼,𝑐𝛼 ,𝑡𝛼 ( 𝑓 ) ⊆ ConfΔ

′→Θ′

𝛽,𝑐𝛽 ,𝑡𝛽
(𝑔 ◦ 𝑓 ).

Proof. Consider 𝑃 ∈ Conf𝛼,𝑐𝛼 ( 𝑓 ) and the program 𝑃̃ simulating 𝑃. As
before, this program is defined by replacing each instruction 𝜄 ∈ 𝐼 by
𝜃(𝜄) ∈ 𝐽. I.e. the image of the orbit O ∈ Orbits𝜔(𝑃; (𝑥, initial(𝑃)))with

O = (𝑥0 , 𝑠0)
𝜄0→ (𝑥1 , 𝑠1)

𝜄1→ . . .
𝜄𝑛−1→ (𝑥𝑛 , 𝑠𝑛)

𝜄𝑛→ . . . ,

through this simulation is O′ which consists in the sequence

(𝜙(𝑥0), 𝑠0)
𝜃(𝜄0)→ (𝜙(𝑥1), 𝑠1)

𝜃(𝜄1)→ . . .
𝜃(𝜄𝑛−1)→ (𝜙(𝑥𝑛), 𝑠𝑛)

𝜃(𝜄𝑛 )→ . . . .

We now compute the transition cost of O′:

𝑡𝛽(O′) =
∑
𝑖

𝑡𝛽(𝜃(𝜄𝑖), 𝜙(𝑥𝑖))

⩽
∑
𝑖

𝑔(𝑡𝛼(𝜄𝑖 , 𝑥𝑖))

⩽ 𝑔(
∑
𝑖

𝑡𝛼(𝜄𝑖 , 𝑥𝑖))

⩽ 𝑔(𝑡𝛼(O)).

Now, since 𝑃 satisfied that 𝑡𝛼(O) = 𝑂( 𝑓 (𝑐𝛼(𝑥))), this gives 𝑡𝛽(O′) =
𝑂(𝑔( 𝑓 (𝑐𝛼(𝑥)))). If one restricts to configurations 𝑥 = Δ(𝑑) for a 𝑑 ∈ D,
then using the fact that 𝑐𝛼(Δ(𝑑)) = 𝑐𝛽(Δ′(𝑑)), we deduce that:

𝑡𝛽(O′) = 𝑂(𝑔( 𝑓 (𝑐𝛽(Δ′(𝑑))))),

which means that 𝑃̃ belongs to Trans𝛽,𝑐𝛽 ,𝑡𝛽 (𝑔 ◦ 𝑓 ). R

We can also consider quantitative variants of the notions of program-wise
simulations (Definition 4.4.2 and Definition 4.4.5). Here again, while
the usual notion is that of overhead, it is in fact more natural to work
with cost expansions. I.e. we will here note that 𝑡𝑘(O′) ⩽ 𝑓 (𝑡𝑘(O)) for
𝑓 (𝑛) = 2𝑛2+6𝑘𝑛. Note that the overhead is simply computed as 𝑓 (𝑛)−𝑛.
The following definition introduces this notion.

Definition 5.6.2 Let 𝑓 , 𝑔 : N → N be functions. Suppose a program
𝑃 ∈ Programs(𝛼) is intentionally simulated by a program 𝑄 ∈ Programs(𝛽)
through 𝜙 : X → Y. Then by definition, for all 𝑥 ∈ X and all orbit
O ∈ Orbits𝜔(𝑃; (𝑥, initial(𝑃))), there exists an injection 𝜄 : N → N and a
corresponding orbit O′ ∈ Orbits𝜔(𝑄; (𝜙(𝑥), initial(𝑄))). We say that 𝑃 is
intentionally simulated with 𝑓 (𝑛) transition cost expansion and with 𝑔(𝑛)
configuration cost expansion when for all such choices of 𝑥 and O, we have:

𝑡𝛽(O′𝜄(𝑘)) ⩽ 𝑓 (𝑡𝛼(O′𝑘)),

𝑐𝛽(O𝜄(𝑘)) ⩽ 𝑔(𝑐𝛼(O′𝑘)).

Definition 5.6.3 Let 𝑓 , 𝑔 : N→ N be functions and (𝛼, 𝑐𝛼 , 𝑡𝛼), (𝛽, 𝑐𝛽 , 𝑡𝛽)
be qmcs. We say that 𝛼 is program-wise intentionally simulated by 𝛽 with 𝑓 (𝑛)
transition cost expansion and with 𝑔(𝑛) configuration cost expansion when
for all program 𝑃 ∈ Programs(𝛼) there exists a program 𝑄 ∈ Programs(𝛽)
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which intentionally simulates 𝑃 with 𝑓 (𝑛) transition cost expansion and with
𝑔(𝑛) configuration cost expansion.

Example 5.6.1 We can consider the standard configuration and transition
costs 𝑠𝑘 , 𝑡𝑘 for the amc 𝛼𝑘tm (Example 4.4.1) defined as:

𝑠𝑘 : ((𝑠 𝑗
𝑖
)𝑖∈Z , ℎ

𝑗)𝑗∈{1,...,𝑘} ↦→ 𝑘 × |((𝑠 𝑗
𝑖
)𝑖∈Z , ℎ

𝑗)𝑗∈{1,...,𝑘}|

where |((𝑠 𝑗
𝑖
)𝑖∈Z , ℎ

𝑗)𝑗∈{1,...,𝑘}| is equal to

max
𝑖
{(∀𝑗 , 𝑖 > ℎ 𝑗) ∧ (∃𝑗𝑠 𝑗

𝑖
≠ 0)} −min

𝑖
{(∀𝑗 , 𝑖 < ℎ 𝑗) ∧ (∃𝑗𝑠 𝑗

𝑖
≠ 0)},

and

𝑡𝑘 :


left(𝜌) , ((𝑠 𝑗

𝑖
)𝑖∈Z , ℎ

𝑗)𝑗∈{1,...,𝑘} ↦→ 1
right(𝜌) , ((𝑠 𝑗

𝑖
)𝑖∈Z , ℎ

𝑗)𝑗∈{1,...,𝑘} ↦→ 1
write

(𝜌)
∗ , ((𝑠 𝑗𝑖 )𝑖∈Z , ℎ

𝑗)𝑗∈{1,...,𝑘} ↦→ 1
read

(𝜌)
∗ , ((𝑠 𝑗𝑖 )𝑖∈Z , ℎ

𝑗)𝑗∈{1,...,𝑘} ↦→ 0

As we have shown in Proposition 4.4.5, the amc 𝛼̃tm program-wise
simulates the amc 𝛼𝑘tm. What about the quantitative aspects, i.e. if
one considers the qmcs (𝛼̃tm , 𝑠 , 𝑡) and (𝛼𝑘tm , 𝑠𝑘 , 𝑡𝑘)? Suppose that 𝑃 ∈
Programs(𝛼𝑘tm) is simulated by the program 𝑃̃ ∈ Programs(𝛼̃tm) defined
in the proof of Proposition 4.4.5.

We first consider the configuration cost functions. Recall that 𝜙 : X𝑘tm →
𝛼̃tm maps a configuration ((𝑠 𝑗

𝑖
)𝑖∈Z , ℎ

𝑗)𝑗∈{1,...,𝑘} to a configuration split into
blocks of 3𝑘 symbols corresponding to a position 𝑗 ∈ Z such that at least
one of the tape has a non-★ symbol at position 𝑗. Hence 𝑠(𝜙(𝑥)) ⩽ 3𝑘𝑠𝑘(𝑥).
This shows the simulation has a 𝑔(𝑛) = 3𝑘𝑛 configuration cost expansion,
i.e. a 𝑔(𝑛) − 𝑛 = (3𝑘 − 1)𝑛 linear overhead.

Now, given an orbit O ∈ Orbits𝑛(𝑃; 𝑥), we have already explained that a
computation (𝑥, 𝑠) inst→ (𝑥′, 𝑠′) is simulated by the computation:

(𝜙(𝑥), 𝑠 , 𝑖) → · · · → (𝜙(𝑥′), 𝑠 , 𝑖).

We need to understand what is the cost of this orbit. The computation
can be split into steps as follows:

(𝜙(𝑥), 𝑠 , 𝑖) → · · · → (𝑥1 , 𝑠 , 𝑠𝑟)
→ · · · → (𝑥1 , 𝑠 , 𝑢)
→ · · · → (𝑥1 , 𝑠 , 𝑏)
→ · · · → (𝑥1 , 𝑠 , 𝑖)

The first step is of fixed length (depending on the tape 𝜌 on which
the instruction acts), and bounded by 2𝑘. The third step depends on
the instruction but is always of length bounded by 4𝑘. The second
step correspond to the search of the position of the 𝜌-th head from
the position of the first head, while the fourth step corresponds to the
search of the position of the first head from the position of the 𝜌-th head.
Both are thus bounded in length by |ℎ𝜌 − ℎ1|, a value bounded by the
configuration cost 𝑐𝑘(𝑥). We therefore have a bound on the cost of the
orbit O′ ∈ Orbits𝑛

′(𝑃̃; 𝑥) corresponding to O:

𝑡𝑘(O′) ⩽ 𝑡𝑘(O) × (6𝑘 + 2𝑐𝑘(O)).
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This shows that the simulation has 𝑓 (𝑛) = 2𝑛2 + 6𝑘𝑛 transition cost
expansion. This can be turned into a notion of overhead (which is more
standard in complexity theory) by considering 𝑓 (𝑛) − 𝑛. In this case,
this gives a quadratic overhead. As a consequence, the simulation of
𝑃 by 𝑃̃ has a constant 3𝑘 overhead, and a linear time overhead in the
configuration cost.

Now, in that specific case one can also show that the configuration cost
grows at most linearly in the transition cost. Indeed, for each instruction
inst and configuration 𝑥 ∈ X𝑘tm, we have 𝑐𝑘(𝛼𝑘tm(inst)(𝑥)) ⩽ 𝑐𝑘(𝑥) +
𝑡𝑘(inst). Using this, we obtain:

𝑡𝑘(O′) ⩽ 𝑡𝑘(O) × (6𝑘 + 2𝑡𝑘(O)),

that is a transition cost overhead of 𝑡𝑘(O) × (6𝑘 + 2𝑡𝑘(O)) − 𝑡𝑘(O), i.e. a
quadratic overhead.

Remark 5.6.2 Let us note that these notions allow to consider models
that are usually described as unrealistic with a cost model that turns them
into realistic models! Consider for instance the BSS model over rational
numbers. With naive configuration cost model

𝑐( 𝑓 ) = min{𝑖 ∈ Z | ∀𝑗 > 𝑖 , 𝑓 (𝑗) = 0} −max{𝑖 ∈ Z | ∀𝑗 < 𝑖 , 𝑓 (𝑗) = 0}

and naive transition cost model (counting a unitary cost to tests, and to
multiplications/additions9), this is indeed a model that is not realistic. 9: I avoid writing down the definition,

but this would coincide with defining
the cost of applying some polynomial to
be the number of vertices in the algebraic
computation trees computing it.

I however argue that it is possible to associate a cost model to this model
such that it can be simulated by a Turing machine with bounded (and even
linearly bounded) configuration and transition cost expansions. Indeed,
let us consider the following cost model, where | 𝑝𝑞 | = log2(𝑝) + log2(𝑞):

𝑐′( 𝑓 ) =
∑
𝑖∈Z
| 𝑓 (𝑖)|.

This should allow for such a simulation. Similarly, one could define a
realistic transition cost model, although the definition would be very
complicated10. 10: It can be more easily defined in the al-

gebraic model (Example 3.2.7)), in which
we only compute simple operations (ad-
ditions, multiplications); in this case,
defining for instance 𝑡′(add(𝑛, 𝑚)) =

𝑡′(mul(𝑛, 𝑚)) = |𝑚| × |𝑛| should allow
for a simulation with a linearly bounded
transition cost expansion.

5.7. Universal programs and hierarchy theorems

In this section, we will define universal programs. Let us start with a
definition. Note that this section is concerned only with deterministic
programs.

Definition 5.7.1 A universal program for an amc 𝛼 is an abstract 𝛼-program
𝑈 and an embedding 𝜓𝑈 of Programs(𝛼) × X into X such that for all 𝑃 ∈
Programs(𝛼),𝑈 · (𝜓𝑈 (𝑃, _)) – a program on X – intensionally simulates 𝑃.

The configuration and transition cost expansions of 𝑈 are defined as the
configuration and transition cost expansions of the program-wise intentional
simulation, when well defined.

More precisely, a universal program𝑈 is such that for all program 𝑃 ∈
Programs(𝛼), for all 𝑥 ∈ X, and for all orbitO ∈ Orbits𝜔(𝑃; (𝑥, initial(𝑃))),
there exists an orbit O′ ∈ Orbits𝜔(𝑈 ; (𝜓𝑈 (𝑃, 𝑥), initial(𝑃))) and an injec-
tion 𝜄 : N→ N satisfying:

∀𝑘 ∈ N,O′𝜄(𝑘) = 𝜙𝑈 (𝑀,O𝑘).
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We will now consider 𝛼 : 𝕄(𝐼)↷ X and first notice that – if one restricts
to finite sets of states:

Card(Programs(𝛼)) = Card(𝕄(𝐼)) = max{Card(𝐼), 𝜔}.

We write 𝜅 = max{Card(𝐼), 𝜔}, and we fix a bĳective map

𝜃 : Programs(𝛼) → 𝜅.

The goal is now to prove a hierarchy theorem w.r.t. some data structure D
and an interpretation Δ. We will focus on programs computing functions
from Δ to ΔB. To obtain the theorem in a general abstract way but keep
the statements tractable, we will require some additional hypotheses that
we will introduce in a lazy way (as they are needed).

First, we suppose that there exists an implementation in 𝛼 of the data
structure Cwhose underlying domain is C = D×N and with the structural
maps pred : (𝑑, 𝑛) ↦→ (𝑑, 𝑛 − 1), read0 : (𝑑, 𝑛) ↦→ (𝑑, 𝑛) defined only
when 𝑛 = 0, and read𝑆 : (𝑑, 𝑛) ↦→ (𝑑, 𝑛) defined only when 𝑛 ≠ 0. We
will write 𝑏𝑝 : D×N→ N a bound (we suppose it exists) on the transition
cost of the program Pred implementing pred, i.e. for all (𝑑, 𝑛) ∈ C,

((𝑑, 𝑛 − 1), terminal(Pred)) ∈ Orbits𝑏𝑝 (𝑑,𝑛)(Pred; ((𝑑, 𝑛), initial(Pred))).

Similarly, we write 𝑏𝑟 : D ×N→ N a bound on the transition cost of the
implementations of read0 and read𝑆.

Second, we consider an 𝛼-computable function 𝑓 : Δ(𝑑) → N, i.e. we
will suppose that there exists a program 𝑃 𝑓 ∈ Programs(𝛼)whose graph
satisfies

{(𝑑, 𝑓 (𝑑)) | 𝑑 ∈ D} ⊂ Gr(𝑃 𝑓 ).
We will write 𝑏 𝑓 : Δ(𝑑) → N a bound (we suppose it exists) on the transi-
tion cost of the orbit O𝑑 from (𝑑, initial(𝑃 𝑓 )) to ((𝑑, 𝑓 (𝑑)), terminal(𝑃 𝑓 )),
i.e. 𝑡𝛼(O𝑑) ⩽ 𝑏 𝑓 (𝑑).
Third, we suppose that the transition complexity of the instructions
are not impacted by considering pairs. More precisely, we suppose that
𝑡𝛼(𝜄, 𝑥) = 𝑡𝛼(𝜄, (𝑥, 𝑛)).
We can then prove the following essential lemma.

Lemma 5.7.1 Let 𝛼 : 𝕄(𝐼) ↷ X be an amc, 𝑃 ∈ ProgramsΔ→ΔB (𝛼) be a
program and 𝑓 : X→ N an 𝛼-computable function.

There exists a program 𝑃̃≤ 𝑓 ∈ TransΔ→ΔB
𝛼 () simulating 𝑃 on 𝑥 for at most 𝑓 (𝑥)

steps, and outputs 0 if 𝑃 has not reached a terminating state in those 𝑓 (𝑥) steps.
Moreover, if 𝑃 has transition complexity bounded by a function 𝑔 : D→ N, the
program 𝑃̃≤ 𝑓 has transition complexity bounded by 𝑔(𝑑) + 𝑓 (𝑑) × (𝑏𝑝( 𝑓 (𝑑)) +
𝑏𝑟( 𝑓 (𝑑))) + 𝑏 𝑓 (𝑑).

Proof. We construct 𝑃 𝑓 as follows:

▶ the initial state initial(𝑃̃≤ 𝑓 ) is identified with initial(𝑃 𝑓 ), the pro-
gram that computes (𝑑, 𝑓 (𝑑)) from 𝑑;

▶ we then identify terminal(𝑃 𝑓 )with initial(𝑃′)where 𝑃′ is obtained
by interleaving 𝑃 with the program Pred: it is defined with states
𝑆𝑃 × 𝑆Pred with the set of edges defined as follows:
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• for each edge 𝑒 ∈ 𝐸𝑃 , we have an edge

(𝑚𝑒 ◦ read𝑆 , (𝑖𝑒 , terminal(Pred)) → (𝑜𝑒 , initial(Pred)));

• for each edge 𝑓 ∈ 𝐸Pred and 𝑠 ∈ 𝑆𝑃 we define the edge

(𝑚 𝑓 , (𝑠, 𝑖 𝑓 ) → (𝑠, 𝑜 𝑓 ));

• for all 𝑠 ∈ 𝑆𝑃 \ {terminal(𝑃)}, we add the edges

(read0 , (𝑠, terminal(Pred)) → terminal(𝑃̃≤ 𝑓 ));

• we identify states (terminal(𝑃), terminal(Pred))with the state
terminal(𝑃̃≤ 𝑓 ).

Now, one can check that for all 𝑥 ∈ X there exists 𝑦 ∈ X such that
(𝑥, 𝑦) ∈ Gr(𝑃 𝑓 ) 𝑓 (·). Moreover, Gr(𝑃) 𝑓 (·) ⊂ Gr(𝑃 𝑓 ) 𝑓 (·).
The last thing to check is the transition cost of 𝑃 𝑓 supposing that 𝑃
has transition complexity bounded by 𝑔. From the definition and the
assumptions, an orbit of 𝑃̃≤ 𝑓 starting at (Δ(𝑑), initial(𝑃̃≤ 𝑓 )) is composed
by:

▶ an orbit from (Δ(𝑑), initial(𝑃̃≤ 𝑓 )) to ((Δ(𝑑), 𝑓 (𝑑)), initial(𝑃′)), to-
gether with a use of read0/read𝑆 are each step; the transition is
therefore bounded by 𝑏 𝑓 (𝑑) + 𝑑 × 𝑏𝑟( 𝑓 (𝑑)) ;

▶ an orbit from ((Δ(𝑑), 𝑓 (𝑑)), initial(𝑃′)) to some (𝑦, terminal(𝑃̃≤ 𝑓 ))
which is obtained as an interleaving of an orbit of length at most
𝑓 (𝑑) of 𝑃 starting at (Δ(𝑑), initial(𝑃)) with transition complexity
bounded by 𝑔, and orbits from ((𝑥, 𝑘), initial(Pred)) to ((𝑥, 𝑘 −
1), terminal(Pred)) in Pred, each of them with transition complexity
bounded by 𝑏𝑝( 𝑓 (𝑑)).

This gives the required bound. R

Now, this lemma can be used to prove the following proposition. Here
we suppose that 𝑏𝑝 , 𝑏𝑟 are constant and 𝑏 𝑓 is 𝑂(𝑔 ◦ ℎ)11. 11: These assumptions are verified in the

case of Turing machines. In particular 𝑏𝑝
and 𝑏𝑟 are constant when the counter is
represented on a separated tape.Proposition 5.7.2 Let 𝑔, ℎ be 𝛼-computable functions N→ N. If there exists

a universal machine𝑈 for 𝛼 with transition cost expansions bounded by 𝑔, then
the following language12: 12: We write here 𝑀 · Δ(𝑑) →𝑔 1 to

denote that the orbit of 𝑀 at Δ(𝑑)
reaches (ΔB(1), terminal(𝑃)) with tran-
sition complexity in 𝑂(𝑔(𝑐𝛼(Δ(𝑑)))).Lℎ = {𝜙𝑈 (𝑀, 𝑑) ∈ X | 𝑀 · Δ(𝑑) →𝑔 1}

belongs to the class Trans𝜙𝑈→ΔB
𝛼,𝑐𝛼 ,𝑡𝛼 (𝑔 ◦ ℎ).

Proof. Note that 𝜙𝑈 can be understood as the interpretation of the abstract
data domain 𝜅 ×D.

To prove this statement, we define a program deciding whether a pair
(𝑀, 𝑑) belongs to L. This program 𝑀̃ needs to run 𝑀 on 𝑥 for ℎ steps.
This is equivalent to running 𝑈 on 𝜙𝑈 (𝑀, 𝑥) for 𝑔 ◦ ℎ steps. From the
previous lemma, this can be done in transition cost 𝑔 ◦ ℎ(𝑑) + 𝑔 ◦ ℎ(𝑑) ×
(𝑏𝑝(𝑔◦ℎ(𝑑))+𝑏𝑟(𝑔◦ℎ(𝑑)))+𝑏 𝑓 (𝑑), hence 𝑔◦ℎ(𝑑)(1+𝑏𝑝+𝑏𝑟)+𝑏 𝑓 . Since we
assumed that 𝑏𝑝 and 𝑏𝑟 are constant, and that 𝑏 𝑓 = 𝑂(𝑔 ◦ ℎ), we have that
𝑀̃ has transition cost in𝑂(𝑔◦ℎ), i.e. it belongs to Trans𝜙𝑈→ΔB

𝛼,𝑐𝛼 ,𝑡𝛼 (𝑔◦ℎ). R
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Now that we have shown that Lℎ belongs to the class

Trans𝜙𝑈→ΔB
𝛼,𝑐𝛼 ,𝑡𝛼 (𝑔 ◦ ℎ),

we will show that it is not in

Trans𝜙𝑈→ΔB
𝛼,𝑐𝛼 ,𝑡𝛼 (ℎ).

One assumption used in the following proof is that the not operation
on booleans can be performed in13 𝑂(ℎ) transition complexity. More- 13: In the case of Turing machines, this is

done in constant transition complexity.over, we will require that D = 𝜅 and that there exists a program 𝑄
which on input (Δ(𝑑), initial(𝑄)) reaches (𝜙𝑈 (Δ(𝑑),Δ(𝑑)), terminal(𝑄))
in transition complexity in14 𝑂(ℎ). 14: In the case of Turing machines, this

is done in 𝑂(log2(𝑑)).
Given a program 𝑃 in Trans𝜙𝑈→ΔB

𝛼,𝑐𝛼 ,𝑡𝛼 (ℎ), we define its language as follows:

Lang(𝑃) = {𝜙𝑈 (𝑃, 𝑑) | (ΔB(1), terminal(𝑃)) ∈ Orbits𝜔(𝑃; 𝜙𝑈 (𝑃, 𝑑)).

Theorem 5.7.3 There are no 𝑃 in Trans𝜙𝑈→ΔB
𝛼,𝑐𝛼 ,𝑡𝛼 (ℎ) such that Lang(𝑃) = Lℎ .

Proof. This is the standard diagonalisation proof. Suppose there exists
such a program 𝑃. Then consider the program 𝑃̃ obtained by pre-
composing 𝑃 with a program that outputs 𝜙𝑈 (𝜃−1(𝑥), 𝑥) and post-
composing it with a program implementing the not operation on the
output. The resulting program simply applies 𝑃 to 𝜙𝑈 (𝑀, ⟨𝑀⟩) and
negates the result. By the assumption that both the program that pro-
duces 𝜙𝑈 (𝜃−1(𝑥), 𝑥) from 𝑥 and the implementation of not are in 𝑂(ℎ)
transition complexity, 𝑃̃ belongs to Trans𝛼,𝑐𝛼 ,𝑡𝛼 (ℎ) as well.

We can now ask whether ⟨𝑃̃⟩ is accepted by 𝑃̃ or not. Since 𝑃̃ belongs to
Trans𝛼,𝑐𝛼 ,𝑡𝛼 (ℎ), it produces either 0 or 1 on ⟨𝑃̃⟩. If it produces a ΔB(0), it
means that𝑃(𝑃̃, ⟨𝑃̃⟩)was producing aΔB(1), which means that 𝑃̃·⟨𝑃̃⟩ →𝑔

1, a contradiction. If it produces a ΔB(1), it means that 𝑃(𝑃̃, ⟨𝑃̃⟩) was
producing aΔB(0), meaning that 𝑃̃ ·⟨𝑃̃⟩ did not reachΔB(1) in𝑂(𝑔(Δ(𝑑))).
Since we assumed that 𝑃̃ belongs to Trans𝛼,𝑐𝛼 ,𝑡𝛼 (ℎ), this means that 𝑃̃ ·⟨𝑃̃⟩
has reached (ΔB(0), terminal(𝑃̃)), another contradiction.

This ends the proof, as we have shown that supposing that the existence
of a program 𝑃 in Trans𝛼,𝑐𝛼 ,𝑡𝛼 (ℎ) such that Lang(𝑃) = Lℎ leads to a
contradiction. R

While the proof here is contrived and requires lots of assumptions, it
should be noted that it does not rely on any assumptions on the cost model
considered. As a consequence, it allows to recover standard time hierarchy
theorems but also hierarchy theorem for other notions of transition cost
(e.g. accounting for energy consumption rather than time).

I expect that these abstract hierarchy theorem could clarify the structure
of the standard time hierarchy theorems [91–93]. Indeed, by enforcing [91]: Hartmanis et al. (1967), On the Com-

putational Complexity of Algorithms
[92]: Sudborough et al. (1976), On Fami-
lies of Languages Defined by Time-Bounded
Random Access Machines
[93]: Jones (1993), Constant time factors do
matter

the consideration of every step and clarifying every bound, the role of
every assumption and how they impact the end result is made explicit.

While I did not develop it in this document, a proper configuration cost
hierarchy theorem can be obtained in a similar way, generalising the
space hierarchy theorem.



Abstract specification and
algorithms 6.

The terminology "algorithm" predates computers, and in fact does not
appear in the first papers about computability. It was used to refer
mostly to methods of resolution in mathematics (leading to the job title
of "algoriste" [94]). The general use within computer science seems to [94]: Lamassé (2013), Relationships be-

tween French “practical arithmetics” and
teaching?

have its origin within the Russian school (Markov [95], then Kolmogorov

[95]: Markov (1954), The theory of algo-
rithms

[96]), even though the terminology is used by Church already in 1936

[96]: Kolmogorov et al. (1958), On the
definition of an algorithm

[97]. The word quickly gained traction in computer science (even leading

[97]: Church (1936), An Unsolvable Prob-
lem of Elementary Number Theory

to naming a subfield of theoretical computer science: algorithmics). In
recent years, a third use has eclipsed the two previous ones (at least in
term of everyday use) by being used outside of the computer science
community to AI systems (what we would call models trained for, e.g.
recommandation), but also to some extent to all computer systems.

These three different usages have been identified by Airoldi in his book
[98], in which he separates those into ‘eras’: the analog era, the digital [98]: Airoldi (2022), Machine Habitus: To-

ward a Sociology of Algorithmsera, and the platform era. While this reading is extremely useful and
clairvoyant, I feel the term era hides the fact that today all three usage
of the word co-exist: while an era ends to be succeeded by the next, this
is not the case here. The word algorithm is thus used with those three
different meanings depending on the context. Are those notions the
same? My answer would be the following.

The mathematics (analog) and computer science (digital) notions are
the same, and they are somehow captured within the definitions shown
below (as an example, I explain in subsection 3 how Euclid’s constructions
can be represented in this way). There is still a difference between the two
in that I believe the computer science notion to be a specific subset of the
mathematical one, being related to physical constraints. One could say
that digital algorithms are captured by digits, but my view is different:
how could this point of view arguably be extended to analog computers,
quantum computers, biological computing? Formally distinguishing
what is a computer system and what is simply a mathematical, abstract,
device, is difficult, maybe an impossible task. And ever evolving: we
can now compute with adiabatic systems, but this was just a thought
experiment a few years back.

Are those notions related in any way with the third, fashionable, sense? I
also would say it is, although I believe there is at the origin of this use
a crude misunderstanding of computer systems leading to a confusion
between the three notions I have already spent many pages distinguish-
ing properly: computation, programs, source code, and algorithms. At
appears that in most cases, the word is meant to be used to refer to the
program (or trained model), while indeed referring to properties and
issues with some algorithm the latter implements. I stress the word ‘some’
here, as my understanding is that a given program never implements a
unique algorithm but a multitude of algorithms. To illustrate this, we can
read things such as

The Faceflicks algorithm is a set of ranking signals powered
by machine learning and artificial intelligence. It calculates
which content is most likely to appeal to each user and then
delivers them a personalized feed.

If we overlook some of the obvious issues with the sentence (like the use
of the word "powered"), we see that the part of the quote is about the
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algorithm: it produces a personalised ranking. However, it also refers to
the program: only a program calculates, while an algorithm will tell you
how the calculation should be structured. So, overall, my point of view is
that most of the discourse on algorithms as understood in the platform
era of Airoldi are indeed just this: algorithms in the same historical
sense, i.e. some algorithm that is implemented by the trained model
(which, I recall, is a program). But no, this algorithm is not hosted on
the company’s private servers, and in fact it cannot be tweaked directly:
only the model has a physical reality. The cultural aspects of trained
models, notably for personalised recommendation, seem essential, and a
complete understanding of the production and use of those is essential.
We note in particular the beautiful idea put forth (with much more
care than what follows) by Airoldi that recommandation models are a
material embodiment of Bourdieu’s notion of habitus, an idea supported
by quotations from Bourdieu himself:

"C’est une espèce de machine transformatrice qui fait que
nous « reproduisons » les conditions sociales de notre pro-
pre production, mais d’une façon relativement imprévisible.
[. . . ] On peut le penser par analogie avec un programme
d’ordinateur (analogie dangereuse, parce que mécaniste),
mais un programme autocorrectible."

Pierre Bourdieu
« Le marché linguistique », in Questions de sociologie,

Éditions de Minuit, 1980.

Let us note however that without access to the model itself, some of its
properties can still be deduced. In some way, this corresponds to finding
refined algorithms that the program implements. I.e. say a program is
supposed to select applicants being interviewed for a job (a real example
[99]). This program is a black box, and all we know of it is that it takes [99]: O’neil (2017), Weapons of math de-

struction: How big data increases inequality
and threatens democracy

in some information (e.g. the candidate’s curriculum vitae) and outputs
some answer (whether the applicant will be interviewed, i.e. a yes or
no answer). This is an algorithm implemented by the program, but a
very crude one. What if we are now able to probe the program, i.e.
provide it with different curriculum vitae and check the answer. What
can be deduced from it? We may be able to see that it will exclude some
applicants based on their diploma (e.g. answer "no" for applicants with a
PhD, or without a MBA). Obviously, we cannot know for certain that it will
do so, and can only compute statistics and say that with high probability
the program does implement a more refined algorithm which takes in a
CV, checks the diploma and then either directly rejects or perform more
computations before answering. However, neither the program itself or
the source code can be probed in this way: one cannot deduce which
languages or data structures were used to write the source code, how
it was compiled, it is not possible to know on which architecture the
program is defined, etc. In such a blackbox situation, the algorithm is the
one entity on which one can experiment. In fact, the only information
about a program that one can expect to obtain concerns the algorithms it
implements. Is this sufficient to, e.g. ensure that the law is respected? The
kind of information one can deduce seems limited. Moreover, it requires
unlimited queries to the program, something that is more often than not,
impossible in practice. These questions around how to put into place
such black box testing relating to auditing lead to interesting technical
("how to perform a black box analysis?" [100, 101]) and juridic ("how to [100]: Merrer et al. (2021), Setting the

Record Straighter on Shadow Banning
[101]: Merrer et al. (2023), Modeling rabbit-
holes on YouTube

access the needed information?") issues, but I also expect theoretical
investigations to emerge from this (maybe based on material from the
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following sections), notably answering questions such as "what exactly
can be deduced about the program?".

This is clearly a pressing current societal issue, and even more when
one considers the way the program is produced. Indeed, the literature
in biases is already well supplied, and most of it has been focussed on
how to prevent biases in trained models. However, one interesting and
less understood aspect of it is the social condition of their production.
The work of Jaton [102] explains well how not only the training data, [102]: Jaton (2021), The Constitution of Al-

gorithms: Ground-Truthing, Programming,
Formulating

but also the process of annotation, impacts the produced model. In fact,
we have moved from a situation in which a team of developers worked
together to produce precise computer code whose behaviour was (for the
most part) understood, to a situation in which the obtained program is
designed by independent workers from the choice of corpus and the way
it is annotated, without these workers consciously knowing their work
impacts the resulting program. Theoretically, there is an interesting point
to be made here (oblivious to the social aspects): these trained models
usually answer an underspecified question. I.e. deciding if a picture
shows a dog or a cat can sometimes have no answer. As a consequence,
the computation that is expected does not coincide with a function
Pictures→ {0, 1}. In fact, if one were asked which function the model
should compute, one could not answer. All we can do is give examples,
i.e. all we know are sample points in the space Pictures for which the
answer is known. This is easily seen in work coming from adversarial AI,
where models are used to produce edge cases such as a picture of a dog
that is also the picture of a cat. The choice of corpus correspond to those
sample points. But annotations give additional information which is
used in the training process. It may for instance indicate some part of the
picture to indicate where the animal is: the form and placement of these
annotations will impact the trained model. Lastly, the training method
used (what AI researcher actually call the algorithm) will also impact the
model. We therefore have three interdependent actions which, together,
produce a specific program. However, how these actions, independently
and combined, affect the resulting program remains mostly unclear for
the time being.

6.1. Background

We will for the moment forget part of the questions listed above to focus
on the notion of algorithm itself, without considering the conditions of
their production and use, as well as their (undeniable) impact.

We will focus on the following question: can the notion of algorithm be
formalised? As we have seen, some conceptual analysis is needed before-
hand, as one could ask what exactly is meant by the word "algorithm"
here. As explained above, my point of view is that there exists a notion of
algorithm underlying all three uses above, and which may have in fact,
more reality than the notion of program.

The question of formalising algorithms has been discussed by authors in
the past. Most notably, Moschovakis [103, 104] and Gurevich [105, 106] [103]: Moschovakis (2001), What is an Al-

gorithm?
[104]: Moschovakis (1998), On Founding
the Theory of Algorithms
[105]: Gurevich (2012), What Is an Algo-
rithm?
[106]: Blass et al. (2003), Algorithms: A
quest for absolute definitions

both came up with proposed definitions. My understanding is that their
proposals are different but not unreconcilable. An idea that subsumes
Gurevich approach is that of an algorithm as a specification. The proposal
below shares this point of view, but proposes a notion of algorithm that
we feel is more satisfactory in that:
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▶ its relation with other notions (programs, data structures, etc.) is
much clearer than with abstract state machines which somehow
conflate programs and algorithms1; 1: This is in particular illustrated by the

fact that one can define an amc of abstract
states machines (subsection 3.2).

▶ abstract state machines are less natural mathematical notion: our
formalisation uses standard mathematics, providing numerous
tools and methods;

▶ in practice, it is not possible to compare two abstract state ma-
chines (for instance saying that one somehow subsumes the other),
whereas this can be done with the definition given below.

One important criticism of Gurevich approach is that of Moschovakis, in
particular with respect to complexity. Again, we will discuss later how
complexity issues can be formalised within our proposal, and illustrate
it with Moschovakis’ favorite example: merge sort.

6.2. A new proposal

I will present the proposed mathematical definition of algorithms in
two steps. This decomposition is interesting in itself, because the use
of the term algorithm can refer to any of the proposed definitions below.
The first notion is that of syntactic algorithm. A syntactic algorithm
provides information on how many different actions are performed in
the algorithm and how they are arranged. It is in fact an approximation
of what the general consensus is on the definition of algorithm, since
it does not provide any information about the semantics, i.e. it does not
impose restrictions on what the different actions actually do. This puts
into light an important aspect of algorithms: implicit assumptions. Let
us illustrate that point.

Consider the following algorithm:
Input: x, y
While 𝑦 ≠ 0:

While 𝑥 ≥ 𝑦:
𝑥 = 𝑥 − 𝑦;

𝑧 = 𝑥;
𝑥 = 𝑦;
𝑦 = 𝑧;

Output x
Anyone with some mathematics and/or computer science education
will recognise this as Euclid’s algorithm to compute the gcd. But there
is some hidden assumption: what does it means to compute 𝑥 − 𝑦? If
asked, most people will answer that 𝑥 and 𝑦 are integers and "−" refers to
the usual subtraction. But some others may answer that 𝑥 and 𝑦 are real
numbers, or elements of a finite field. I have not conducted experiments,
but I expect that none (or a negligible number of them) will answer that
the symbol "−" is something other than some kind of subtraction. But if
we agree that 𝑥 and 𝑦 can represent any objects taken in a fixed domain,
how can one decide what makes − a subtraction or not?

In most occurrences of the above algorithm, some implicit interpretation
will be given by the context. But is the context part of the algorithm? And
to what extent this context should be part of it? Leaving aside the fact
that Euclid did not write the algorithm in this way, he actually writes
it twice in the Elements [107–109]. In book 7, he exposes the algorithm [107]: Heath (1956), The Thirteen Books of

Euclid’s Elements
[108]: Heath (1956), The Thirteen Books of
Euclid’s Elements
[109]: Heath (1956), The Thirteen Books of
Euclid’s Elements

for integers, while in book 10 he exposes it for lines and segments. Are
those the same algorithms? In some sense they are, and this would be the
general agreement. But subtracting an integer to another is not the same
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as subtracting a segment from another. The relationship between both
objects is complex: the are uncountably many segments but countably
many integers, so there is no hope to encode one algorithm into the other
(or not without introducing many complex operations: quotients, etc.).

Syntactic algorithms

Definition 6.2.1 A syntactic algorithm is a finite labelled graph (with control
states) 𝐴 = (𝑆, initial(𝐴), terminal(𝐴), 𝐸, 𝑠, 𝑡 , 𝐿, ℓ ) where 𝑆 is a finite set of
states containing the initial and terminal states initial(𝐴) and terminal(𝐴),
(𝑆, 𝐸, 𝑠, 𝑡) is a directed graph, 𝐿 a finite set of labels, and ℓ : 𝐸 → 𝐿 is a
labelling function.

The set of all algorithms is written as Algorithms(∗).

The guiding intuition behind this definition is that the graph describes
a general control structure, while the labels corresponds to the name
of operations used in the algorithm. For the moment, the algorithm
is syntactic because the labels are just arbitrary names. The notions
introduced in the next sections refine the definition by associating labels
to more restricted classes of operations. Before going through those
definitions, we can already define what it means for a program to
implement a syntactic algorithm.

Definition 6.2.2 (Glueing of graphings along a labelled graph) Suppose
given a syntactic algorithm 𝐴 = (𝑉, 𝑆, initial(𝐴), terminal(𝐴), 𝐸, 𝑠, 𝑡 , 𝐿, ℓ ),
and an amc 𝛼 : 𝕄(𝐼) ↷ X. Suppose moreover given a map 𝜙 : 𝐿 →
Programs(𝛼). The pre-glueing of 𝜙 along 𝐴 is the machine P(𝐴, 𝜙) defined
as the disjoint union

∑
𝑒∈𝐸 𝜙(ℓ (𝑒)). The glueing of 𝜙 along 𝐴 is then defined

as the program G(𝐴, 𝜙) obtained by identifying for all 𝑣 ∈ 𝑉 the states
{initial(𝑒 , 𝜙(𝑒)) | 𝑠(𝑒) = 𝑣} ∪ {terminal(𝑒 , 𝜙(𝑒)) | 𝑡(𝑒) = 𝑣}, and setting
initial(G(𝐴, 𝜙)) = initial(𝐴) and terminal(G(𝐴, 𝜙)) = terminal(𝐴).

We illustrate in Figure 6.1 how a program can be understood as a glueing
along an algorithm.

Definition 6.2.3 A program 𝐺 implements the algorithm 𝐴 when there exists
𝜙 : 𝐿→ Programs(𝛼) such that 𝐺 is the glueing of 𝐴 along 𝜙.



6. Abstract specification and algorithms 85

𝑖2

𝑡2

𝑑

𝑒

𝑓

𝑎2 𝑏2

𝑡1

𝑐

𝑡4

𝑎1 𝑏1

(a) Program 𝑀

·

·

··

𝑎 1
𝑎2

𝑎 4
𝑎4

(b) An algorithm 𝐴

·

·

··

𝑎 1

𝑎2

𝑎 4

𝑎4

𝑖4

𝑡4

𝑎 𝑏

𝑖4

𝑡4

𝑎 𝑏

𝑖1

𝑡1

𝑐

𝑖2

𝑡2

𝑑

𝑒

𝑓

(c) 𝑀 seen as a glueing along an algorithm 𝐴
Figure 6.1.: Example of glueing

6.3. Specified algorithms

The next step is to impose that labels correspond to some structure. In
particular, we may want to indicate specific maps defined as part of data
structures. In practice, these data structures are implicitly given when
writing down algorithm, e.g. using pseudo-code.

We remark that if an algorithm uses two data structures, say integers
and booleans, or simply manipulates several elements of a given data
structures, the implicit assumption is that several copies of these data
structures are simultaneously interpreted within the implementing model
of computation. Formally, this is equivalent to considering products of
data structures: if D = (D, 𝑆) and D′ = (D′, 𝑆′) are data structures, then
their product D × D′ is defined as (D ×D′, 𝑆×̄𝑆′)where:

𝑆×̄𝑆′ = {𝑠 × IdD′ | 𝑠 ∈ 𝑆} ∪ {IdD × 𝑠′ | 𝑠′ ∈ 𝑆′}.

As a consequence, it is possible to define algorithms with respect to a
single data structure.

Definition 6.3.1 Let D = (D, 𝑆) be a data structure. A specified algorithm
w.r.t. D is a tuple 𝐴 = (𝑉, initial(𝐴), terminal(𝐴), 𝐸, 𝑠, 𝑡 , 𝐿, ℓ , |[·]|) where:

▶ (𝑉, initial(𝐴), terminal(𝐴), 𝐸, 𝑠, 𝑡 , 𝐿, ℓ ) is a syntactical algorithm;
▶ |[:]|𝐿→ 𝑆 maps the labels to structural maps.
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The set of all specified algorithms w.r.t. D is written Algorithms(D).

Definition 6.3.2 (Coherent labelings) Suppose given a specified algorithm
𝐴 = (𝑉, 𝑆, initial(𝐴), terminal(𝐴), 𝐸, 𝑠, 𝑡 , 𝐿, ℓ , |[·]|) for a data structure
D = (D, 𝑆), and an amc 𝛼 : 𝕄(𝐼) ↷ X. A map 𝜙 : 𝐿 → Programs(𝛼) is
coherent with |[·]| with respect to an interpretation Δ of D when for all 𝑜 ∈ 𝐿,
𝜙(𝑜) is an implementation of |[𝑜]| w.r.t. Δ.

Definition 6.3.3 A program 𝐺 implements the specified algorithm 𝐴 when
there exists 𝜙 : 𝐿→ Programs(𝛼) coherent with |[·]| such that 𝐺 is the glueing
of 𝐴 along 𝜙.

This notion of specified algorithm could probably be stronger than what
one would expect. One important remark here is that the notion of data
structure is set-theoretic and requires one to fix a concrete domain. As a
consequence, the notion does not allow to identify euclidean division on
integers and euclidean division on polynomials because the underlying
abstract data domain is different. The following proposed definition
should allow for a satisfactory solution to this problem.

Logically specified data structures

Definition 6.3.4 A logical data structure D is defined as first-order logical
theory over a first-order language (Var, Fun,Rel).
An abstract data structure D is a model of the logical data structure D if it is
a model of D, i.e. if D ⊨ D.

Definition 6.3.5 Let D be a logical data structure over a first-order language
(Var, Fun,Rel). A logically-specified algorithm w.r.t. D is a tuple 𝐴 =

(𝑉, initial(𝐴), terminal(𝐴), 𝐸, 𝑠, 𝑡 , 𝐿, ℓ , |[·]|) where:

▶ (𝑉, initial(𝐴), terminal(𝐴), 𝐸, 𝑠, 𝑡 , 𝐿, ℓ ) is a syntactical algorithm;
▶ |[:]|𝐿→ Fun ∪ Rel maps the labels to structural maps.

The set of all specified algorithms w.r.t. D is written Algorithms(D).

It should be clear that given a logically-specified algorithm 𝐴w.r.t. D and
a model D of D, one can deduce the unique induced specified algorithm
𝐴D⊨D. Now, implementing 𝐴 boils down to implementing some 𝐴D⊨D for
a model of D.

Definition 6.3.6 A program 𝑃 implements the logically specified algorithm 𝐴
if there exists an abstract data structure D such that 𝑃 implements the induced
specified algorithm 𝐴D⊨D.

Note that euclidean division on integers and on arbitrary euclidean
ring are but different models of the same logical data structure. The
corresponding notion of logically specified algorithm, intermediate between
the syntactical and specified notions considered above, then allows to
identify the euclidean division algorithms defined on different euclidean
rings.

Remark 6.3.1 The reader familiar with Gurevich’s abstract state machines
[68] will probably be curious about potential connections with the notion
we just developed since both are based on first order structures. While
there may be a formal relation between the approaches, I note that
Gurevich uses the first-order structure to define the states (i.e. the space
underlying the amc) while it is here used to describe instructions (or
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rather, more precisely, programs) that can be performed. This seems to
be a fundamental difference. One consequence of this is that Gurevich
modifies the values of the interpretations of functions and relation
symbols, while here the interpretation is fixed once and for all.

6.4. Properties

Ordered structure

We can adapt the definition of glueing to define glueing of algorithms
(instead of programs) along another algorithm. This leads to the definition
of a preorder on the set of algorithms.

Definition 6.4.1 (Glueing of algorithms along a labelled graph) Suppose
given a syntactic algorithm 𝐴 = (𝑉, 𝑆, initial(𝐴), terminal(𝐴), 𝐸, 𝑠, 𝑡 , 𝐿, ℓ ),
and an amc 𝛼 : 𝕄(𝐼) ↷ X. Suppose moreover given a map 𝜙 : 𝐿 →
Algorithms(∗). The pre-glueing of 𝜙 along 𝐴 is defined as the disjoint union
P(𝐴, 𝜙) = ∑

𝑒∈𝐸 𝜙(ℓ (𝑒)). The glueing of 𝜙 along 𝐴 is then defined as
the algorithm G(𝐴, 𝜙) obtained by identifying for all 𝑣 ∈ 𝑉 the vertices
{initial(𝑒 , 𝜙(𝑒)) | 𝑠(𝑒) = 𝑣} ∪ {terminal(𝑒 , 𝜙(𝑒)) | 𝑡(𝑒) = 𝑣}, and setting
initial(G(𝐴, 𝜙)) = initial(𝐴) and terminal(G(𝐴, 𝜙)) = terminal(𝐴).
If 𝜙 maps 𝐿 into Algorithms(𝐷) (for 𝐷 either an abstract data structure or a
logical data structure), the resulting algorithm belongs to Algorithms(𝐷).

Proposition 6.4.1 If 𝐵 is obtained as the glueing of 𝐴 along 𝜙, and 𝑃 is a
program implementing 𝐵, then 𝑃 also implements 𝐴.

Proof. Here is a sketch of the proof, avoiding painful details. If 𝑃 imple-
ments 𝐵, then 𝑃 is a glueing of 𝐵 along some 𝜓 : 𝐿𝐵 → Programs(𝛼).
Moreover, 𝐵 is a glueing of 𝐴 along some 𝜙 : 𝐿𝐴 → Algorithms(∗). Now,
from both these maps one can deduce a 𝜃 : 𝐿𝐴 → Programs(𝛼). It is not
difficult to check that 𝑃 is the glueing of 𝐴 along this map 𝜃. R

Remark 6.4.1 The notion of algorithm we obtain does not correspond
to an equivalence relation on programs. In particular, one program
implements many different algorithms. In some way, the notion is almost
topological, and we could expect some separation axiom to be satisfied
(probably the 𝑇0 axiom: that if 𝑃 and 𝑄 are different programs, there
exists an algorithm 𝐴 such that one of 𝑃 and 𝑄 implement 𝐴 but not the
other).

Among the future research in that direction, one direction seems of
particular importance: the definition of a notion of distance. A distance
between algorithms, together with a notion of implementation/glueing up
to some error 𝜖. This could be used to talk about convergence of programs
toward an algorithm for instance.
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Complexity

We will now define cost models for abstract data structures. First, we
will need to fix a notion of size on the abstract data domain. Then each
operation in the data structure will have an associated cost.

Note that this reveals my point of view that an algorithm does not possess
a unique associated complexity (in the same way an abstract program
does not possess its own complexity). This is somehow coherent with the
general use. If I define an algorithm using matrix multiplication, does its
complexity change each time someone2 finds a faster algorithm for matrix 2: Most probably Virginia Vassilevska

Williams [110, 111], although there are
current limitations [112, 113].

multiplication? Moreover, it would mean that either euclidean division
has an associated complexity, whether it applies to natural numbers of
polynomials, or that different instances of the algorithms on different
abstract data structures should not be identified.

Definition 6.4.2 A cost model for an abstract data structure D = (D, 𝑆) is
defined as:

▶ a size function D→ N;
▶ a cost function: for each 𝑠 ∈ 𝑆, cost(𝑠) : Dar(𝑠) → N, where ar(𝑠)

denotes the arity of 𝑠.

Definition 6.4.3 Let D = (D, 𝑆) be an abstract data structure with a cost model
(𝑠, 𝑐). A qmc (𝛼, 𝑐𝛼 , 𝑡𝛼) quantitatively implements D with cost model (𝑠, 𝑐)
if:

▶ the interpretation Δ : D→ X satisfies 𝑐𝛼(Δ(𝑑)) ⩽ size(𝑑);
▶ for all 𝑠 ∈ 𝑆, the program𝑃𝑠 implementing 𝑠 is cost(𝑠)-bounded. Formally,

this is expressed as the fact that

𝑃 ∈ TransΔ
ar(𝑠)→Δdom(𝑠)

𝛼,𝑐𝛼 ,𝑡𝛼 (cost(𝑠)),

where dom(𝑠) = 𝑘 means that the codomain of 𝑠 is equal to 𝐷𝑘 .

Here again, a thorough study of these notions would be required to
establish a number of basic results. I leave this for future work.

6.5. Examples

Variant of the gcd algorithm

We here discuss examples of algorithms and implementations. We chose
to work with the computation of the gcd algorithm. We start by defining
two syntactic algorithms, shown in Figure 6.2.

The algorithm 𝐴 is implemented by the following two programs3: 3: We write those in the syntax of Python
for simplicity (which defines an abstract
program in an adequate amc), but we
note that any notion of abstract program
could be used here.

(a) Algorithm 𝐴 (b) Algorithm 𝐵
Figure 6.2.: Two syntactical algorithms
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𝑦 = 0 𝑦
≠

0

return 𝑥

𝑦 = 𝑥 mod 𝑦
𝑥 = 𝑦

(a) Algorithm 𝐴

𝑦 = 0
𝑦
≠ 0

return 𝑥 𝑥
⩾
𝑦 𝑥

<
𝑦

𝑥 = 𝑦
𝑦 = 𝑥

𝑥
=
𝑥
−
𝑦

(b) Algorithm 𝐵
Figure 6.3.: Two specified algorithms

def gcd1(x, y): def f(x, y):
while(y): while(y):
z = x z = x
x = y x = y
y = z % y y = z - y

return x return x

This illustrates the limitation of syntactical algorithms: they do not
capture operational information about the programs used to interpret
labels in the algorithms. Similarly, the following two programs implement
the syntactic algorithm 𝐵:

def gcd2(x, y): def g(x, y):
while(y): while(y):
while x>= y: while x>= y:
x = x - y x = x \ y

z = x z = x
x = y x = y
y = z y = z

return x return x

As formally states by Proposition 6.4.1, and using the fact that 𝐵 can be
obtained as the glueing of algorithms along 𝐴, these two programs also
implement the algorithm 𝐴. But now one can define specified version
of the algorithms 𝐴 and 𝐵. These are shown in Figure 6.3; we leave
implicit the formal definition of the data structure, which should be clear
(the only elements manipulated are integers here). Now, while gcd1 still
implements the specified algorithm 𝐴, this is not the case of f. Similarly,
gcd2 implements the specified algorithms 𝐵 and 𝐴, but g does not.

Now, the algorithms in Figure 6.3 can also be considered as logically
specified, where the data structure is defined as a model of a first order
theory of euclidean rings.

Euclid’s geometric algorithms

To represent ruler and compass constructions, we consider the space4 4: Note that instead of R, one could con-
sider any euclidean field here.X = (2ℝ2)ℕ0 × (ℝ2)N0 × {0, 1}𝜔, i.e. a space of triples (𝑆𝑖)𝑚𝑖=1 :: (𝑥 𝑗)𝑛𝑗=1 :: 𝜄

consisting of a finite sequence of subsets (𝑆𝑖)𝑚𝑖=1 of the plane, a finite
sequence of points (𝑥 𝑗)𝑛𝑗=1 of the plane, and an infinite input sequence
(representing choices made by the environment).

We will use the infinite sequence to represent choices. Indeed, at some
points in the constructions, a choice needs to be made. For instance. in
the construction of an isosceles triangle, one starts from two points and
constructs the third vertex of the triangle by intersecting two circles. But
two such points exist, and a choice must be made. It seems however that
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such choices need only be made when the set of options is finite5. We will 5: This was pointed out to me by Alberto
Naibo.therefore consider chosen a map choose(𝜄0 . . . 𝜄𝑘)(𝑆) which is a function

that takes a finite set 𝑆 and a sequence of elements of {0, 1} and outputs
one elements of 𝑆. Moreover, we suppose that the probability of choosing
an element 𝑎 is exactly 1

Card(𝑆) . This can be ensured by constructing
choose as the function outputted by an automata defined as a binary tree
of depth 𝑘 the smallest integer such that 2𝑘 ⩾ Card(𝑆), in which the last
2𝑘 − Card(𝑆) leaves are identified with the root. One can easily check
that, given a sequence of 0, 1 generated by independent equidistributed
Bernoulli trials, the probability of reaching one of the remaining Card(𝑆)
leaves is equal to6 1

Card(𝑆) . 6: This is a result I established in a differ-
ent context, namely that of proving that
Agafonov’s theorem holds for (rational)
probabilistic selectors [52].

The monoid action is generated by the following maps:

▶ exchange(𝜎, 𝜏)maps (𝑆𝑖)𝑚𝑖=1 :: (𝑥 𝑗)𝑛𝑗=1 :: 𝜄 to

(𝑆𝜎(𝑖))𝑚𝑖=1 :: (𝑥𝜏(𝑗))𝑛𝑗=1 :: 𝜄

▶ circle : maps (𝑆𝑖)𝑚𝑖=1 :: (𝑥 𝑗)𝑛𝑗=1 :: 𝜄 to

(𝑆𝑖)𝑚𝑖=1·{𝑥 ∈ ℝ2 | 𝑑(𝑥, 𝑥𝑛) = 𝑑(𝑥𝑛−1 , 𝑥𝑛)} :: (𝑥 𝑗)𝑛𝑗=1 :: 𝜄

▶ intersection : maps (𝑆𝑖)𝑚𝑖=1 :: (𝑥 𝑗)𝑛𝑗=1 :: 𝜄 to

↦→ (𝑆𝑖)𝑚𝑖=1·𝑆𝑚−1 ∩ 𝑆𝑚 :: (𝑥 𝑗)𝑛𝑗=1 :: 𝜄

▶ pick : maps (𝑆𝑖)𝑚𝑖=1 :: (𝑥 𝑗)𝑛𝑗=1 :: 𝜄0 . . . 𝜄𝑘 · 𝜄 to

(𝑆𝑖)𝑚𝑖=1 :: (𝑥 𝑗)𝑛𝑗=1 · choose(𝜄0 . . . 𝜄𝑘)(𝑆𝑚) :: 𝜄,

which is defined when 𝑆𝑚 is finite, and in which 𝑘 is chosen so that
choose(𝜄0 . . . 𝜄𝑘)(𝑆) is well defined.

Differently from what happens with ASM, here we remain faithful to
Euclid’s algorithmic procedure, as we explicitly have an action corre-
sponding to the construction of the circle. This is possible because actions
are made not on a single point, but they are instead global ones (made on
a whole subspace).

Example 6.5.1 We now explain how this amc allows to consider an
abstract program that constructs the third vertex of an isosceles triangle
starting from two points. Denoting 𝜏 the permutation over {1, 2} that
exchanges both values, the (straight-line) program Iso is defined as:

(circle, initial(Iso) → 𝑠1),
(exchange(Id , 𝜏), 𝑠1 → 𝑠2),
(circle, 𝑠2 → 𝑠3),
(intersection, 𝑠3 → 𝑠4),
(pick, 𝑠4 → terminal(Iso))


Note that the last instruction will pick one of the two intersection points of
the two constructed circles. This choice is determined by the environment,
represented as the advice string.
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The merge sort algorithm

The merge sort algorithm, and more generally the recursive algorithms,
are examples of algorithms which are simultaneously defined with
the data structure. I.e. we define the merge sort algorithm as a speci-
fied algorithm with respect to a data structure that contains a sorting
algorithm.

More precisely, suppose one wants to define the merge sort algorithm.
The first thing is to define the data structure. We will require here
a structure that allows for working with several lists, and compare
elements (say integers). Defining a recursive algorithm then corresponds
to the following: one adds to the data structure the corresponding
structural map sort : ΔL → ΔL. To ease the argument, we will suppose
that there exists a structural map split : ΔL → ΔL × ΔL defined as
𝑠0 , 𝑠1 , . . . , 𝑠𝑘 ↦→ (𝑠0 , 𝑠2 , 𝑠4 , . . . ) × (𝑠1 , 𝑠3 , 𝑠5 , . . . ). It should be clear that
if such a map is not given as part of the structure, one can define a
corresponding algorithme using more elementary operations on list. We
can then define the sorting algorithm shown in Figure 6.4. Note that in
the figures, we indicate the initial state by an incoming edge and the
terminal state by a double circle.
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return(𝑦 + 𝑎 + 𝑏);

Figure 6.4.: The mergesort algorithm

Now if the sort label is interpreted by a program that sorts a list
(whichever method is used), a program implementing this algorithm
is itself a program that sorts a list. The recursive definition consists in
defining the overall algorithm 𝑅 obtained by glueing 𝐴 along the label
sortwithin𝐴. This is computing a limit: we start with𝐴, and then obtain
𝐴[sort← 𝐴], in which we then glue 𝐴 along the label sort to obtain
𝐴[sort← 𝐴][sort← 𝐴], etc.
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The recursive program 𝑅 is then defined formally as the limit of this
process, which can be represented as an infinite graph that no longer
contains the label sort. If one tries to express in more details the recur-
sive structure, we obtain that the obtained algorithm is defined as an
implementation of the algorithm shown in Figure 6.5 which put forth the
recursive structure, which is close to the recursive definition considered
by Moschovakis [103]: [103]: Moschovakis (2001), What is an Al-

gorithm?

sort(𝑥) =
{
[] if 𝑥 = []
merge(sort(split(𝑥)1), sort(split(𝑥)2)) otherwise.

Here the merge algorithm, shown in Figure 6.6, can also be given a
recursive definition:

merge(𝑎, 𝑏) =

𝑏 if 𝑎 = []
𝑎 if 𝑏 = []
fst(𝑎) +merge(queue(𝑎), 𝑏) if fst(𝑎) ≤ fst(𝑏)
fst(𝑏) +merge(𝑎, queue(𝑏)) otherwise
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Figure 6.5.: Outer structure of the merge-
sort algorithm
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=
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return(𝑦 + 𝑎 + 𝑏);

Figure 6.6.: Structure of the merge algo-
rithm

Finally, let us note that in the proposed algorithm, no order is enforced
on the two subroutines sort(𝑎) and sort(𝑏): the label simply imposes
that both operation are performed in this part of the algorithm. As
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a consequence, an implementation may choose to sort 𝑎 before 𝑏, or
𝑏 before 𝑎, or even sort both in parallel. Variants of this algorithm in
which an order is imposed can be considered by replacing the arrow
labelled with both sort operations by two consecutive arrows, one sorting
𝑎 (for instance), the other sorting 𝑏. Another variant in which both
operations are performed in parallel may be represented by a single
arrow labelled with sort(𝑎) | sort(𝑏) where | indicates explicitly the
parallel execution. These algorithms are refinements of the original one,
and any implementation of those is an implementation of the algorithm
in Figure 6.4. However they are more specific, and any implementation
of the original algorithm may not implement one of those, depending on
how the subroutine are ordered.

Complexity. What about complexity then? Well, if one defines a cost
model for the underlying data structure, we end up writing down an
equation. Let us write down the details. We will consider that testing
whether a list is empty or not has cost 1. Similarly, concatenation will
have cost 17 as well the operation of taking the queue of the list (i.e. 7: While this is not correct in the Tur-

ing machine model, the use of chained
list implemented with indirect references
(pointers) makes this assumption realis-
tic.

popping the first element). We are then left with comparisons, splitting,
and sorting. Let suppose that splitting has a linear cost in the length of
the list and comparison also has cost 1, and let us write the cost of sorting
a list of length 𝑛 as 𝑓 (𝑛). Now, what is the cost of the overall algorithm?

The worst case execution goes through the loop 𝑛 times, where 𝑛 is the
length of the input list. The algorithm then has its transition complexity
bounded by the map 𝑛 ↦→ 1+ 𝑛 + 2× 𝑓 (𝑛/2) + 𝑛. Now, since we identify
the overall algorithm with the label sort, this imposes the following
equation:

𝑓 (𝑛) ⩽ 1 + 2𝑛 + 2. 𝑓 (𝑛
2
)

This expands as

𝑓 (𝑛) ⩽ 1 + 2𝑛 + 2(1 + 2
𝑛

2
+ 2 𝑓 (𝑛

4
)) = 1 + 2𝑛 + 2 + 2𝑛 + 4 𝑓 (𝑛

4
))

then

𝑓 (𝑛) ⩽ 1 + 2𝑛 + 2 + 2𝑛 + 4(1 + 2
𝑛

4
+ 2 𝑓 (𝑛

8
)))

⩽ 1 + 2𝑛 + 2 + 2𝑛 + 4 + 2𝑛 + 4. 𝑓 (𝑛
8
),

and so on.

In the end we get

𝑓 (𝑛) ⩽ (1 + 2 + · · · + 2log2(𝑛)) + (2𝑛 + 2𝑛 + · · · + 2𝑛)
⩽ 2log2(𝑛)+1 + 2𝑛 log2(𝑛)
⩽ 2𝑛(log2(𝑛) + 1).
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Discretisation and static analyses
of programs 7.

7.1. Flow analyses

The different results presented in this chapter take their origin in the Jones
and Kristiansen mwp-flow analysis [1] which computes a polynomial [1]: Jones et al. (2009), A Flow Calculus of

Mwp-bounds for Complexity Analysisbound – if it exists – on the sizes (of the values) of variables in an
imperative while programming language, extended with a loop operator.
This is done by computing for each variable a vector that tracks how
it depends on other variables – and the program itself gets assigned a
matrix collecting those vectors.

While this does not ensure termination, it provides a certificate guarantee-
ing that the program uses throughout its execution at most a polynomial
amount of space, and as a consequence that if it terminates, it will do so
in polynomial time.

Despite this origin, we will here expose how the point of view developed
in the first part can be used to recover the dependency analysis used in
two of these work (initially obtained as a simplification of the mwp flow
approach), through the discretisation of abstract programs. Before expos-
ing this (new) material, I start by defining the programming language I
will be working with.

A simple While imperative language (with parallel
capacities)

I now introduce a simple imperative while language, with semantics
similar to C, extended with a parallel command, similar to e.g. OpenMP’s
directives [114], allowing to execute its arguments in parallel.This lan- [114]: Klemm et al. (2021), OpenMP Appli-

cation Programming Interface Specification
Version 5.2

guage supports arrays but not pointers, and we let for and do...while

loops be represented using while loops. It is easy to map to fragments
of C, Java, or any other imperative programming language with parallel
support.

Later sections will consider fragments of this langage. Most will consider
only the non-parallel fragment: parallel instructions will only appear in
the output of the automatic parallelisation presented in section 7.4, but
the analysed programs will all be sequential.

The grammar of this langage is given in Figure 7.1. A variable represents
either an undetermined ‘primitive’ datatype, e.g. not a reference variable,
or an array, whose indices are given by an expression. We generally use s
and t for arrays. An expression is either a variable, a value (e.g. integer
literal) or the application to expressions of some operator op, which can

varF i | j | . . . | s | t | . . . | x1 | x2 | . . . | zn | var[exp] (Variables)
expF var | val | op(exp, . . . , exp) (Expression)
comF var← exp | if exp then com else com |

while exp do com | use(var, . . . , var) | skip |
com;com | parallel{com}{com} · · · {com} (Command) Figure 7.1.: A simple imperative while

language
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C out(C) in(C) Occ(C) = out(C) ∪ in(C)
x = e x Occ(e) x ∪Occ(e)

t[e1] = e2 t Occ(e1) ∪Occ(e2) t ∪Occ(e1) ∪Occ(e2)
if e then C1 else C2 out(C1) ∪ out(C2) Occ(e) ∪ in(C1) ∪ in(C2) Occ(e) ∪Occ(C1) ∪Occ(C2)

while e do C out(C) Occ(e) ∪ in(C) Occ(e) ∪Occ(C)
use(x1 , . . . , xn) f {x1 , . . . , xn} {x1 , . . . , xn , f}

skip ∅ ∅ ∅
C1; C2 out(C1) ∪ out(C2) in(C1) ∪ in(C2) Occ(C1) ∪Occ(C2)

Table 7.1.: Definition of out, in and Occ
for commands

be e.g. relational (==, <, etc.) or arithmetic (+, -, etc.). We let V (resp. e,
C) ranges over variables (resp. expression, command) and W range over
while loops. We also use combined assignment operators and write e.g.
x++ for x += 1. We assume commands to be correct, e.g. with operators
correctly applied to expressions, no out-of-bounds errors, etc.

A program is thus a sequence of statements, each statement being either
an assignment, a conditional, a while loop, a function call1or a skip. Statements 1: Theuse command represents any com-

mand which does not modify its vari-
ables but use them and should not be
moved around carelessly (e. g. a printf).
In practice, we currently treat all function
calls as use, even if the function is pure.

are abstracted into commands, which can be a statement, a sequence of
commands, or multiple commands to be run in parallel.

The semantics of parallel is the following: variables appearing in the
arguments are considered local, and the value of a given variable x after
execution of the parallel command is the value of the last modified local
variable x. This implies possible race conditions, but our transformation
(detailed in section 7.4) is robust to those: it assumes given parallel-free
programs, and introduces parallel commands that either uniformly
update the (copy of the) variables across commands, or update them in
only one command.

For convenience we define the following sets of variables which are
summarised in Table 7.1. These are only defined for the non-parallel
fragment.

Definition 7.1.1 Given an expression e, we define the variables occurring in e

by:

Occ(x) = x (7.1)
Occ(t[e]) = t ∪Occ(e) (7.2)

Occ(val) = ∅ (7.3)
Occ(op(e1 , . . . , en)) = Occ(e1) ∪ · · · ∪Occ(en) (7.4)

Definition 7.1.2 Let C be a command, we let out(C) (resp. in(C), Occ(C)) be
the set of variables modified by (resp. used by, occurring in) C as defined in
Table 7.1. In the use(x1 , . . . , xn) case, f is a fresh variable introduced for this
command.

Our treatment of arrays is an over-approximation: we consider the array
as a single entity, and that changing one value in it changes it completely.
While this may seem a rough approximation, it turns out to be satisfactory
for automatic parallelisation: since we do not split loop ‘vertically’ (e.g.
distributing the iteration space between threads) but ‘horizontally’ (e.g.
distributing the tasks between threads), we want each thread in the
parallel command to have control of the array it modifies, and not to
have to synchronize its writes with other commands.
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7.2. Discretisation of abstract programs

I will now describe how the dependency analysis used in some of this
work can be understood as a discretisation of abstract programs. For this,
we define an interpretation of the language considered in the previous
section. We will later show how it relates to mwp matrices.

Definition 7.2.1 We define the amc 𝛼mwp : 𝑀 ↷ ZZ as the monoid action
generated by:

▶ arithmetic operations: +(𝑖 , 𝑗; 𝑘) (resp. ×(𝑖 , 𝑗; 𝑘), resp. 𝐶(𝜆; 𝑘) for 𝜆 ∈ Z)
act as maps 𝛼mwp(+(𝑖 , 𝑗; 𝑘)) : (𝑥𝑝)𝑝∈Z ↦→ (𝑥̄𝑝)𝑝∈Z where 𝑥̄𝑘 = 𝑥𝑖 + 𝑥 𝑗
(resp. 𝑥̄𝑘 = 𝑥𝑖 × 𝑥 𝑗 , resp. 𝑥̄𝑘 = 𝐶) and 𝑥̄𝑝 = 𝑥𝑝 for 𝑝 ≠ 𝑘.

▶ copy operation: copy(𝑖; 𝑘) act as maps 𝛼mwp(copy(𝑖; 𝑘)) : (𝑥𝑝)𝑝∈Z ↦→
(𝑥̄𝑝)𝑝∈Z where 𝑥̄𝑘 = 𝑥𝑖 and 𝑥̄𝑝 = 𝑥𝑝 for 𝑝 ≠ 𝑘.

▶ tests to zero: 𝜋(; 𝑘) the projection of domain {(𝑥𝑝) | 𝑥𝑘 = 0}, and 𝜋̄(; 𝑘)
the complement projection on {(𝑥𝑝) | 𝑥𝑘 ≠ 0}.

This can be used to interpret programs written in the above language as
programs in Programs(𝛼mwp) adequately.

Theorem 7.2.1 While programs as soundly interpreted are abstract 𝛼mwp-
programs.

Proof. The key element here is the translation. For simplicity, we will only
treat conditionals and loops; the case of skip and use are not problematic
(modulo the introduction of fresh variables for occurrences of use). We
will translate each command as an abstract program. The interpretation
of a program (a sequence of commands) will then simply correspond
to a composition of such atomic subprograms by identifying the state
terminal(𝐶) of the program interpreting a command with the state
initial(𝐶′) of the program interpreting the following command.

Each variable will be assigned a register, i.e. a positive index copy of R
in RZ. To ease the proof, we consider that variables are of the form 𝑋𝑖 ,
with corresponding index 𝑖. Negative index copies of RZ will be used
for computing expressions. For simplicity, we consider fixed a function
assigning a unique natural number 𝜃(𝐸) to each expression. Expressions
are then computed using arithmetic operations; the interpretation |[𝐸]| of
an expression is defined inductively as follows:

▶ a variable 𝑋𝑖 is represented as the program |[𝑋𝑖]| with two states
and one edge copy(𝑖;𝜃(𝑋𝑖)) from initial to terminal;

▶ a value 𝜆 is represented as the program |[𝜆]| with two states initial
and terminal, and one edge 𝐶(𝜆; 𝑘) from inital to terminal;

▶ an operation 𝐸1 + 𝐸2 is represented as the program:

initial

𝑠1 𝑠2

terminal

|[𝐸1]|

|[𝐸2]|

+(𝜃(𝐸
1 ),𝜃(𝐸

2 );𝜃(𝐸
1 +

𝐸
2 ))

where:
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• the initial and terminal states of |[𝐸1]| are respectively identi-
fied with initial and 𝑠1;

• the initial and terminal states of |[𝐸2]| are respectively identi-
fied with 𝑠1 and 𝑠2.

▶ similarly, an operation 𝐸1 × 𝐸2 is represented as the program:

initial

𝑠1 𝑠2

terminal

|[𝐸1]|

|[𝐸2]|

×(𝜃(𝐸
1 ),𝜃(𝐸

2 );𝜃(𝐸
1 +

𝐸
2 ))

where:
• the initial and terminal states of |[𝐸1]| are respectively identi-

fied with initial and 𝑠1;
• the initial and terminal states of |[𝐸2]| are respectively identi-

fied with 𝑠1 and 𝑠2.

Now we can define the interpretation of commands and programs
inductively:

▶ assignments 𝑋𝑖 ← 𝐸 are represented as the program obtained
from composing the program |[𝐸]| and the program with two states
and one edge copy(𝜃(𝐸); 𝑖) from initial to terminal as shown in
Figure 7.2a;

▶ conditionals if 𝐸 then 𝐶1 else 𝐶2 are represented as shown in Fig-
ure 7.2b where:

• the initial and terminal states of the program |[𝐸]| computing
the expression 𝐸 are respectively identified with initial and
𝑠1;

• the initial and terminal states of the program |[𝐶1]| are respec-
tively identified with 𝑠2 and terminal;

• the initial and terminal states of the program |[𝐶2]| are respec-
tively identified with 𝑠3 and terminal.

▶ loops while 𝐸 do 𝐶 are interpreted as shown in Figure 7.2c where:
• the initial and terminal states of the program |[𝐸]| computing

the expression 𝐸 are respectively identified with initial and
𝑠1;

• the initial and terminal states of the program |[𝐶]| are respec-
tively identified with 𝑠2 and initial.

▶ the composition 𝐶1;𝐶2 is interpreted as the program obtained by
identifying the initial state of |[𝐶2]| with the terminal state of |[𝐶1]|:

initial 𝑠1 terminal|[𝐶1]| |[𝐶2]|

It is not difficult to check that the Interpretation thus defined soundly
represents the initial program. R

Remark 7.2.1 We note that in the interpretation, we are forced to compute
expressions. This is quite realistic, and one aspect of while programs
that would otherwise be invisible. This explicitation implies that the
interpretation is not quantitatively sound w.r.t. while programs, unless
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initial 𝑠1 terminal|[𝐸]|
copy(𝜃(𝐸); 𝑖)

(a) Interpretation of an assignment 𝑋𝑖 ← 𝐸

initial

𝑠1

𝑠2 𝑠3

terminal

|[𝐸]|

|[𝐶1]| |[𝐶2]|

𝜋
𝜃(𝐸)

0
𝜋̄ 𝜃(𝐸)0

(b) Interpretation of a conditional

initial

𝑠1

𝑠2 terminal

initial

|[𝐸]|

|[𝐶]|

𝜋
𝜃(𝐸)

0
𝜋̄ 𝜃(𝐸)0

(c) Interpretation of a loop Figure 7.2.: Interpretation of while pro-
grams as abstract 𝛼mwp-programs

one considers the cost of evaluating an expression as non-trivial (which
it is not in practice but is still usually overlooked when considering the
running time of a program). I.e. if one considers the time complexity
of 𝐶 := if 𝐸 then 𝑋0 ← 1 else 𝑋0 ← 0 to be equal to time(𝐶) = 1, then
the interpretation of the program will compute the same result in time
that cannot be bounded w.r.t. time(𝐶) since the length of the orbit will
depend on the expression 𝐸 and could be arbitrarily large. But it could
be argued that such a definition of time complexity is not a satisfactory
cost model for the while langage.

Let us also note that one very interesting outcome of this explicitation
is that it explains and justifies the conditional and loop correction terms
that appear in the dependency (and mwp) analysis. This will be detailed
below, when describing the discretisation of the approach.

This straightforward translation associates to each program a graphing,
i.e. a complex dynamical system representing the behaviours of this
program. We will now explain how this representation can be discretised:
instead of considering an action 𝛼 onto a continuous space ZZ, we will
replace the latter by a discrete space {★}Z. The projection R → {★}
forgets everything about the values contained in the registers; the maps
𝛼mwp(+𝑘𝑖, 𝑗) (resp. 𝛼mwp(×𝑘𝑖, 𝑗)) are now trivial; the only information one can
keep is the information of dependency between the registers. I.e. the new
value of register 𝑘 depends on the previous value of registers 𝑖 and 𝑗
exclusively, and everything else is preserved. This can be illustrated as:
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. . . 𝑥𝑖 . . . 𝑥 𝑗 . . . 𝑥𝑘 . . .

. . . 𝑥𝑖 . . . 𝑥 𝑗 . . . 𝑥𝑘 . . .

+𝑘
𝑖, 𝑗

This representation shows two different kinds of dependencies: the
dotted arrows represent the propagation of the values of registers (i.e. an
unaffected register will keep its value, but note that the register 𝑥𝑘 has
no propagation arrow since its value is modified), and proper dependencies
which indicates the value of a register (here 𝑥𝑘) was computed using other
values (in this case 𝑥𝑖 and 𝑥 𝑗). In practice, we are therefore discretising the
operations 𝛼mwp(+𝑘𝑖, 𝑗) and 𝛼mwp(×𝑘𝑖, 𝑗) as matrices over a simple semiring
{0, 1,∞}, where 1 (the unit) represents propagation and∞ represents
proper dependency.

Remark 7.2.2 The matrices are infinite since they act on an infinite number
of variables, hence one could consider those as sort of abstract matrices.
However, we note that almost all operations 𝜄 in fact corresponds to a
Fredholm operator 1+ℂ(𝜄): it is the sum of the identity (which propagates
the value of all registers) and a compact operator ℂ(𝜄) (involving only
the registers concerned by the operation). We will therefore define
abusively the interpretation of an instruction 𝜄 (and by extension of
abstract programs) in 𝛼mwp as ℂ(𝜄). The only instructions for which the
corresponding matrices are not Fredholm operators are the projections
𝜋0(𝑘) and 𝜋̄0(𝑘): those are of the form 1 + ℂ(𝜋0(𝑘)) and 1 + ℂ(𝜋̄0(𝑘))
where ℂ(𝜋0(𝑘)) and ℂ(𝜋̄0(𝑘)) do not even correspond to bounded linear
operators. This problem will however not extend to the interpretation of
programs in the while langage.

This discretisation performed on each operation in the amc defined
above yields the interpretations shown in Figure 7.3. This extends to
the representation of while programs, from which we can deduce a
direct interpretation of basic commands. Note that the projections 𝜋0(𝑘)
and 𝜋̄0(𝑘) are always used composed with the body of a conditional
or a loop. As a consequence, the overall interpretation of the construct
(conditional or loop) remains a Fredholm operator since the projection
can be restricted to the domain of the compact operator corresponding
to the body.

We recall that Fredholm operators are closed under sums and products.
Moreover, we note that composition is quite easily interpreted graphically
in this case: the operator 𝐶 such that (1+ 𝐶2)(1+ 𝐶1) = 1+ 𝐶 is obtained
by collecting paths of length 2 with one edge in the graph of 𝐶1 followed
by an edge in the graph of 𝐶2 such that at least one of these edges has
weight ∞. This composition, applied to the graphical representation
(shown on the left of subfigures in Figure 7.4) of the discretisation
of the interpretation of loops and conditionals defined in the proof
of Theorem 7.2.1, yields matricial expressions (shown on the right of
subfigures in Figure 7.4).

This discretisation leads us to a dependency analysis that will be formally
defined in the next section, and exploited to automatically optimise
(section 7.3) and parallelise loops (section 7.4). However, what we juste
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𝑖

𝑗

𝑘

𝑖

𝑗

𝑘

©­«
1 0 ∞
0 1 ∞
0 0 0

ª®¬
(a) ℂ(+(𝑖 , 𝑗; 𝑘))

𝑖

𝑗

𝑘

𝑖

𝑗

𝑘
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1 0 ∞
0 1 ∞
0 0 0

ª®¬
(b) ℂ(×(𝑖 , 𝑗; 𝑘))

𝑘 𝑘
(

0
)

(c) ℂ(𝐶(𝜆; 𝑘))

𝑖

𝑘

𝑖

𝑘

(
1 ∞
0 ∞

)
(d) ℂ(copy(𝑖; 𝑘))

𝑘

𝑖

𝑗

...

...

𝑘

𝑖

𝑗

...

...
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∞ ∞ ∞ . . . ∞ ∞ . . .
0 1 0 . . . 0 0 . . .
0 0 1 . . . 0 0 . . .
...

...
...

...
...

... . . .
0 0 0 . . . 1 0 . . .
0 0 0 . . . 0 1 . . .
...

...
...

...
...

... . . .

ª®®®®®®®®®®¬
(e) ℂ(𝜋0(𝑘)) Figure 7.3.: Operators defined by the

discretisation of 𝛼mwp

presented is not the origin story of this dependency analysis; the latter
comes from a simplification of Jones and Kristiansen’s mwp flow calculus.
In a similar manner, mwp flow analysis associates matrices to programs,
over a more complex (but still finite) semi-ring {0, 𝑚, 𝑤, 𝑝} instead
of {0, 1,∞}. One interesting aspect of understanding the dependency
analysis as a discretisation is the justification for so-called loop correction
and conditional correction terms (here in(𝐸)𝑡out(𝐶) and in(𝐸)𝑡out(𝐶+𝐷)).
Those terms appeared previously but the justification was somehow ad-
hoc: it was natural to add these dependencies, and adding them made
the whole approach work, but no deep understanding of these terms was
provided. Here we can trace back their origin in a very natural aspect
of conditions: the expressions need to be computed to be evaluated,
creating a dependency of every command in the body on the variables
involved.

Despite being closely related, the original mwp flow analysis is not ob-
tained directly as a discretisation of abstract programs, for two reasons.
First, Jones and Kristiansen’s calculus is not totally defined: some pro-
grams (in particular those not admitting polynomial bounds on the size
of variables) cannot be associated with a mwp matrix. Secondly, the deriva-
tion system is non-deterministic: a given program can be associated to
multiple distinct mwp matrices.

While we will now focus on the dependency analysis, the original mwp
flow calculus will be recalled later in this chapter (section 7.5). We
will then introduce an alternative system, arguably providing a better
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approach to mwp flow analysis, which will not suffer from the two
drawbacks mentionned in the previous paragraph: the derivation system
will be total and deterministic. This new formalism may be obtained
as a more refined discretisation of the above representation of while
programs as abstract 𝛼mwp-programs. The question of how to deduce the
mwp analysis in this way will however be left open in this document.

The constructions above provide the definition of data flow graph (dfg)
of a program 𝑃 [53], or rather their representation as a matrix ℂ(𝑃). [53]: Moyen et al. (2017), Loop Quasi-

Invariant Chunk DetectionWe refer to the literature for a proper definition independent from the
considerations on abstract programs and discretizations.
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𝑖
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...

𝑒𝑘

𝑖
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(a) Assignments 𝑋𝑖 ← 𝐸 (in(𝐸) = {𝑒1 , . . . , 𝑒𝑘})

𝜃(𝐸)

𝑒1

...

𝑒𝑘

𝑐1

...

𝑐𝑛

𝑑1

...

𝑑𝑚

𝜃(𝐸)

𝑒1

...

𝑒𝑘

𝑐1

...

𝑐𝑛

𝑑1

...

𝑑𝑚

...

...

...

𝜃(𝐸)

𝑒1

...

𝑒𝑘

𝑐1

...

𝑐𝑛

𝑑1

...

𝑑𝑚

...

...

...

𝜃(𝐸)

𝑒1

...

𝑒𝑘

𝑐1

...

𝑐𝑛

𝑑1

...

𝑑𝑚

...

...

𝜃(𝐸)

𝑒1

...

𝑒𝑘

𝑐1

...

𝑐𝑛

𝑑1

...

𝑑𝑚

...

...

...

𝜃(𝐸)

𝑒1

...

𝑒𝑘

𝑐1

...

𝑐𝑛

𝑑1

...

𝑑𝑚

...

...|[𝐶]|

|[𝐷]|

|[if 𝐸 then 𝐶 else 𝐷]| = in(𝐸)𝑡(out(𝐶) + out(𝐷))+|[𝐶]| + |[𝐷]|
(b) Conditional if 𝐸 then 𝐶 else 𝐷

𝜃(𝐸)

𝑒1

...

𝑒𝑘

𝑐1

...

𝑐𝑛

𝜃(𝐸)

𝑒1

...

𝑒𝑘

𝑐1

...

𝑐𝑛

...

...

𝜃(𝐸)

𝑒1

...

𝑒𝑘

𝑐1

...

𝑐𝑛

...

...

𝜃(𝐸)

𝑒1

...

𝑒𝑘

𝑐1

...

𝑐𝑛

...

|[𝐶]|

∑∞
𝑘=0

𝑘

|[while 𝐸 do 𝐶]| = 1 + in(𝐸)𝑡(out(𝐶)) + |[𝐶]| + (in(𝐸)𝑡(out(𝐶)) + |[𝐶]|)2 + . . .
= in(𝐸)𝑡(out(𝐶)) + (1 + |[𝐶]| + |[𝐶]|2 + . . . )

(c) Loop while 𝐸 do 𝐶 Figure 7.4.: Compact operators defined
by the discretisation of while programs
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7.3. Dependency analysis and loop
quasi-invariants

Invariance Degree

Based on the computation of dfgs, we are able to define a notion of
dependence degree for commands within a while loop. Based on this
notion of degree, we show how the loop can be optimised by peeling it
in order to extract all quasi-invariant commands, reducing the overall
complexity while preserving the semantics.

Consider a loop C := while E do [C1; C2; . . . , Cn]. We will build a depen-
dence graph Dep(C) from the information given by the dfgs.

We first define the subset of principal dependences of the command Cm
w.r.t. a given variable 𝑖. Intuitively, this principal dependence is the
last command preceding Cm which modified the value of the variable 𝑖.
However, since while and if commands may be skipped, we have to
consider several main dependences in general. Based on this, we will
then build the dependence graph which simply consists in writing the
principal dependences of each command.

Notations 7.3.1. Given a variable 𝑖, we define the set 𝑖≺ as {Ck | 𝑖 ∈ Out(Ck)},
the set of command modifying variable 𝑖. Given a command Cm and a
variable 𝑖 ∈ In(Cm), we denote as PrD𝑖(Cm) the subset of 𝑖≺ – the set of
principal dependences – defined as follows:

▶ it contains the smallest element of 𝑖≺ w.r.t. the order <𝑚 defined as

Cm−1 <𝑚 Cm−2 <𝑚 · · · <𝑚 C1 <𝑚 Cn <𝑚 Cn−1 <𝑚 · · · <𝑚 Cm;

▶ if it contains a command Cℎ which is either a while or if, it contains
the next element of 𝑖≺ w.r.t. the order <𝑚 .

Definition 7.3.1 Let C := while E do [C1; C2; . . . , Cn] be a command. We
define the directed graph Dep(C) as follows:

▶ the set of vertices 𝑉Dep(C) is equal to {C1 , . . . , Cn} (the set of commands
in the loop);

▶ the set of edges 𝐸Dep(C) is equal to ⊎𝑛
𝑚=1 ⊎𝑖∈In(Cm) PrD𝑖(Cm) (the set of all

principal dependencies);
▶ the source 𝑠(𝑖) of the edge Ck ∈ PrD𝑖(Cm) is Ck;
▶ the target 𝑡(𝑖) of the edge Ck ∈ PrD𝑖(Cm) is Cm.

The invariance degree degC(Cm) of a command Cm w.r.t. C is then defined
as follows. When clear, we will avoid writing the subscript C to ease
notations. If Cm is a source in Dep(C), then deg(Cm) = 1. If Cm has a reflective
edge in Dep(C), then deg(Cm) = ∞. Otherwise, we write Fib(Cm) – the fiber
over Cm – the set of vertices in Dep(C) defined as {Ck | ∃𝑒 ∈ 𝐸Dep(C) , 𝑠(𝑒) =
Ck , 𝑡(𝑒) = Cm}, and define deg(Cm) by the following equation, where
𝜒>𝑚(𝑖) = 1 if 𝑖 > 𝑚 and 𝜒>𝑚(𝑖) = 0 otherwise:

deg(Cm) = max
(
{deg(Ci) + 𝜒>𝑚(𝑖) | Ci ∈ Fib(Cm)}

)
In particular, if Cm is part of a cycle in Dep(C), its degree is equal to∞.

For all 𝑖 ∈ N∪{∞}, we define the inverse image deg−1(i), i.e. deg−1(i) =
{Ck | deg(C)𝑘 = 𝑖}, and we note maxdeg(C) the largest integer (i.e. not
equal to ∞) such that deg−1(maxdeg(C)) ≠ ∅. The following lemma is
used in the proof of the main theorem.
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𝑖 := 0;
𝑥 := 42;
𝑦 := 5;
𝑎 := 12;
while 𝑖 < 100 do :
| 𝑗 := 0;
| 𝑠 := 1;
| while 𝑗 < 𝑦 do :
| | 𝑠 := 𝑠 × 𝑗;
| | 𝑗 := 𝑗 + 1;
| if 𝑥 > 100 do :
| | 𝑦1 := 𝑥 + 𝑎;
| if 𝑥 <= 100 do :
| | 𝑦2 := 𝑥 + 100;
| 𝑦 := 𝜑(𝑦1, 𝑦2);
| 𝑗 := 𝑖 − 1;
| 𝑎 := 1;
| 𝑖 := 𝑗 + 2;

(a) An example

𝑗 := 0;

𝑠 := 1;

while 𝑗 < 𝑦 do :
| 𝑠 := 𝑠 × 𝑗
| 𝑗 := 𝑗 + 1

if 𝑥 > 100 do :
| 𝑦1 := 𝑦 + 𝑎;

if 𝑥 <= 100 do :
| 𝑦2 := 𝑥 + 100;

𝑦 := 𝜑(𝑦1, 𝑦2);

𝑎 := 1;

𝑗 := 𝑖 − 1;

𝑖 := 𝑗 + 2;

𝑠

𝑗

𝑦

𝑦1

𝑦2

𝑎

𝑗 𝑖

(b) Dependency graph of the outer while loop Figure 7.5.: Exemple of dependency
graph

Lemma 7.3.2 Consider the set deg−1(i) for an integer 𝑖 > 0 and the relation
induced from the dependency graph, i.e. Ci → Cj if and only if there is a sequence
of edges from Ci to Cj in Dep(C). Then (deg−1(i),→) is a partial order.

Based on the invariance degree, we will be able to peel loops. For this
purpose, we define the following notation. Given a sequence of commands
[C1; C2; . . . ; Cn], we write [Č1; Č2; . . . ; Čn](𝑖) the subsequence in which all
commands of degree strictly less than 𝑖 are removed. We then define if𝑖 =
if E then [Č1; Č2; . . . ; Čn](𝑖), and while𝑖 = while E then [Č1; Č2; . . . ; Čn](𝑖).
We can now state the main theorem of the paper, denoting by JCK the
semantics of the command C.

Theorem 7.3.3 Let C := while E do [C1; C2; . . . , Cn] be a command. Then

JCK ≡ Jif1; if2; . . . ; ifmaxdeg(C); while∞K

In practice: implementations

In the previous section, we have seen that the transformation is possible
from and to a While-language. This section will progressively show
that we apply do it on real programming languages by introducing two
implementations. We first present a proof of concept2 which both analyses 2: https://github.com/statycc/

LQICM_On_C_Toy_Parserand transforms transformation C programs. We will then explain how
we implemented a prototype analysis in a mainstream compiler.

Proof of concept. To easily and quickly integrate our transformation, we
decided to use “pycparser”3, a C parser written in Python. The principal 3: https://github.com/eliben/

pycparserinterest was to simply get and manipulate an Abstract Syntax Tree. Using
a “WhileVisitor” we list all nested while-loops, then, with a bottom-up
strategy (the inner loop first), this tool analyses and transforms the code if
an invariant or quasi-invariant is detected. The analysis is divided in two
parts: the dfg construction and the invariance degree computation.

The first part aims to list relations between statements. In this imple-
mentation we decided to define a relation object by one list of pairs
(for the direct dependencies) and two sets (for the propagations and
reinitializations) of variables. A relation is computed for each command

https://github.com/statycc/LQICM_On_C_Toy_Parser
https://github.com/statycc/LQICM_On_C_Toy_Parser
https://github.com/eliben/pycparser
https://github.com/eliben/pycparser


7. Discretisation and static analyses of programs 106

using a top-down strategy following the dominance tree. The relations
are composed when the corresponding command is a sequence of com-
mands. As described previously, we compute the correction and the
maximum relations possible for a while or if statement. With those
relations, we compute an invariance degree for each statement in the
loop.

This implementation is around 400 lines of Python. It is able to compute
relations of each commands or sequence of commands. This tool focuses
on a restricted C syntax and considers all functions as non-pure. Functions
with side effects can be seen as an anchor in the sequence of statements,
commands can not be moved around them. But we can restrain the
conditions for peeling. We can allow to hoist pure functions. All other
side effects can be broken by this transformation, and thus should not be
moved.

As a llvm pass. Compilers, and especially llvm on which we are
working, use an Intermediate Representation (ir) to handle programs. This
is a typed assembly-like language that is used during all the stages of the
compilation. Programs (in various different languages) are first translated
into the ir, then several optimisations are performed (implemented in
so-called passes). Finally the resulting ir is translated again in actual
assembly language depending on the machine it will run on. Using
a unique ir language allows to do the same optimisations on several
different source languages and for several different target architectures.

One important feature of the llvm ir is the Single Static Assignment form
(ssa). A program is in ssa form if each variable is assigned at most
once. In other words, setting a program in ssa form requires a massive
𝛼-conversion of all the variables to ensure uniqueness of names. The
advantages are obvious since this removes any name-aliasing problem
and ease analysis and transformation.

The main drawback of ssa comes when several different paths in the
Control Flow reach the same point (typically, after a conditional). Then,
the values used after this point may come from any branch and this
cannot be statically decided. For example, if the original program is

if (y) then x:=0 else x:=1;C,

it is relatively easy to turn it into a pseudo-ssa form by 𝛼-converting the
x:

if (y) then x0:=0 else x1:=1;C,

but we do not know in C which of x0 or x1 should be used.

This problem is solved by using 𝜑-functions. That is, the correct ssa form
will be

if (y) then x0:=0 else x1:=1; X:=𝜑(x0, x1); C.

While the use of ssa eases the analysis, we do have to take into account
the 𝜑 functions and handle them correctly.

The llvm compiler does have a Loop Invariant Code Motion (licm) pass
which hoists invariants out of loops. Used with unrolling and instruction
combination optimizations it can sometimes “peel” quasi-invariants.
However, as far as we know, it does not compute invariance degrees and
does not detect quasi-invariant chunks. Hence, if peeling occurs, it is as a
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side effect of another transformation (mostly, pipeline optimisation) and
not to hoist quasi-invariants.

The implementation4 (including a preliminary version of peeling) is 4: https://github.com/ThomasRuby/
LQICM_passalmost 3000 lines of C++. It is able5 to compute relations of each commands
5: Or rather was able, as it was not up-
dated for compatibility with llvm up-
dates.

or sequence of commands, with some restrictions on the form of the loop
analyzed. First, loops with several exit blocks are ignored and left intact
(typically a loop including a break); furthermore, this tool considers
all functions as non-pure as for the Proof of Concept. Even with these
restrictions, the pass is able to optimise code that was previously left
untouched, thus illustrating the power of the method.

7.4. Dependency analysis and parallelisation

This section now explains how the dependency analysis used in the
previous section can also be used to automatically parallelise loops.
We will first expose our loop transformation technique, then prove its
correctness, and finally present some benchmarks showing how the
loop splitting induced by our algorithm outperforms standard automatic
tools.

Our algorithm requires essentially to

1. Pick a loop;
2. Compute its condensation graph (Definition 7.4.2) – this requires

first the dependence graph (Definition 7.4.1);
3. Compute a covering (Definition 7.4.3) of the condensation graph;
4. Create a loop per element of the covering.

Definition 7.4.1 (Dependence graph) The dependence graph of the loop
W B while e do {C1; · · · ; Cn} is the graph whose vertices is the set of commands
{C1; · · · ; Cn}, and there exists a directed edge from C𝑖 to C𝑗 if and only if there
exists variables x ∈ out(C𝑗) and y ∈ in(C𝑖) such that M(W)(x, y) = ∞.

The remainder of the loop transforming principle is simple: once the
graph representing the dependencies between commands is obtained, it
remains to determine the cliques in the graph to form strongly connected
components (sccs) and then separate the sccs into subgraphs to produce
the final parallelizable loops that contain a copy of the loop header and
update commands.

Definition 7.4.2 Given the dependence graph of a loop W,

▶ its strongly connected components (sccs) are its strongly connected
subgraphs,

▶ its condensation graph GW is the graph whose vertices are sccs and
edges are the edges whose source and target belong to distinct sccs.

In our example, the sccs are the nodes themselves, and the condensation
graph is

i++s1[i] = j*j s2[i] = 1/j

Excluding the update command i++, there are now two nodes in the con-
densation graph, and we can construct the parallel loops by 1. inserting a
parallel command, 2. duplicating the loop header and update command,
3. inserting the command in the remaining nodes of the condensation
graph in each loop. For our example, we obtain, as expected,

https://github.com/ThomasRuby/LQICM_pass
https://github.com/ThomasRuby/LQICM_pass
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parallel


while(t[i] != j){
s1[i] = j*j;
i++}



while(t[i] != j){
s2[i] = 1/j;
i++}

.

Formally, what we just did was to split the saturated covering.

Definition 7.4.3 A covering of a graph 𝐺 [115] is a collection of subgraphs [115]: Chung (1980), On the coverings of
graphs

𝐺1 , 𝐺2 , . . . , 𝐺 𝑗 such that 𝐺 = ∪𝑗
𝑖=1𝐺𝑖 .

A saturated covering of 𝐺 is a covering 𝐺1 , 𝐺2 , . . . , 𝐺𝑘 such that for all edge
in 𝐺 with source in 𝐺𝑖 , its target belongs to 𝐺𝑖 as well. It is proper if none of
the subgraph is a subgraph of another.

The algorithm then simply consists in finding a proper saturated covering
of the loop’s condensation graph, and to split the loop accordingly. In
our example, the only proper saturated covering is

{ i++s1[i] = j*j , i++ s2[i] = 1/j }.

If the covering was not proper, then the i++ node on its own would be in
it, leading to create a useless loop that performs nothing but updating its
own condition.

Algorithm 1: Loop splitting algorithm
Data: A loop W B while e do {C1; · · · ; Cn} (Pick a loop W at top level)
Result: If 𝑘 > 1, W̃ B parallel{W1} . . . {W𝑘}, else W̃ B W

1 Compute the condensation graph GW of W, (c.f. Definition 7.4.2);
/* Compute the saturated covering of GW (c.f.

Definition 7.4.3) */
2 while a node 𝑛 in GW is not part of a subgraph 𝐺𝑙 do
3 Create a new subgraph 𝐺𝑖 containing 𝑛;
4 Recursively add to 𝐺𝑖 the nodes targeted by edges whose source

is in 𝐺𝑖 ;
/* Extract the proper saturated covering of GW */

5 forall 𝐺𝑖 in the saturated covering do
6 if ∃𝐺𝑙 in the saturated covering s.t. 𝐺𝑖 is a subgraph of 𝐺𝑙 then
7 remove 𝐺𝑖 ;

/* Create one while loop per subgraph in the proper
saturated covering */

8 forall 𝐺𝑖 in the proper saturated covering do
9 Let W𝑖 B while e do {C𝑖1 ; · · · ; C𝑖𝑚}where {C𝑖1 , . . . , C𝑖𝑚} are the

vertices of 𝐺𝑖 , inserted in the same order as they are in W

We now need to prove that the semantics of the initial loop W is equal to
the semantics of W̃ given by algorithm 1. This is done by showing that for
any variable x appearing in W, its final value after running W is equal to
its final value after running W̃.

Theorem 7.4.1 The transformation W⇝ W̃ given in algorithm 1 preserves the
semantic.

From the theory to benchmarks

We performed an experimental evaluation of our loop fission technique
on a suite of parallel benchmarks. Taking the sequential baseline, we
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j = 0;
while (j<M)
{
s[j] += r[j]*A[j];
q[j] += A[j]*p[j];
j++;

}

#pragma omp parallel private(j)
{ // Each "pragma" block below
// have its own copy of j.
#pragma omp single nowait
{ // "nowait" lets the next
// block start in parallel.
j = 0;
while (j<M) {
s[j] += r[j]*A[j];
j++;

}
}
#pragma omp single
{
j = 0;
while (j<M) {
q[j] += A[j]*p[j];
j++;

}
}

} // Both blocks must be terminated
// before passing this point.

Figure 7.6.: Code transformation exam-
ple

applied the loop fission transformation and parallelization. We compared
the result of our technique to the baseline and to an alternative loop
fission method implemented in ROSE.

We conducted this experiment in C programming language because it
naturally maps to the syntax of the imperative while language presented
in subsection 7.1. We implement the parallel command as OpenMP
directives. For instance, the sequential baseline program on the left of
Figure 7.6 becomes the parallel version on right6, after applying our loop 6: This example is inspired by bench-

mark bicg from PolyBench/C and pre-
sented in our artifact.

fission transformation and parallelization.

The evaluation experimentally substantiated two claims about our tech-
nique:

1. It can parallelize loops that are completely ignored by other auto-
matic loop transformation tools, and results in appreciable gain,
upper-bounded by the number of parallelizable loops produced
by loop fission.

2. Concerning loops that other automatic loop transformation tools
can distribute, it yields comparable results in speedup potential.
We also demonstrate how insertion of parallel directives can be
automated, which supports the practicality of our method.

These results combined confirm that our loop fission technique can easily
be integrated into existing tools to improve the performances of the
resulting code.

Results In analyzing the results, we distinguish two cases: distributing
and parallelizing loops with potentially unknown iterations, and loops
with pre-determined iterations (typically while and for loops, respec-
tively). The difficulty of parallelizing the former arises from the need to
synchronize evaluation of the loop recurrence and termination condition.
Improper synchronization results in overshooting the iterations [116], [116]: Rauchwerger et al. (1995), Paralleliz-

ing While Loops for Multiprocessor Systemsrendering such loops effectively sequential.

http://rosecompiler.org/
http://web.cse.ohio-state.edu/~pouchet.2/software/polybench/
https://github.com/statycc/loop-fission/blob/a695aba2aeab2f4d68a67ab9633535210d930bc6/fission/bicg.c
https://github.com/statycc/loop-fission/blob/a695aba2aeab2f4d68a67ab9633535210d930bc6/fission/bicg.c
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Figure 7.7.: Speedup of selected bench-
marks implemented using while loops.
Note the influence of various compiler
optimization levels, -O0 to -O3 on each
problem, and how parallelization over-
head tends to decrease as input data
size grows fromMINI toEXTRALARGE. The
gain is lower for mvt because it assumes
fissioned form in the original benchmark.
bicg and gesummv obtain higher gain
from applied loop distribution.

Loop fission addresses this challenge by recognizing independence be-
tween statements and producing parallelizable loops. Special care is
needed when inserting parallelization directives for such loops. This
remains a limitation of automated tools and is not natively supported
by OpenMP. We resolved this issue by using the OpenMP single direc-
tive, to prevent overshooting the loop termination condition and need
for synchronization between threads, enabling parallel execution by
multiple threads on individual loop statements. The strategy is simple,
implementable, and we show it to be effective. However, it is also upper-
bounded in speedup potential by the number of parallelizable loops
produced by the transformation. This is a syntactic constraint, rather
than one based on number of available cores.

The results, presented in Table 7.2, show that our approach, paired with
the described parallelization strategy, yields a gain relative to the number
of independent parallelizable loops in the transformed benchmark. We
observe this e.g. for benchmarks bicg, gesummv, and mvt, as presented
in Figure 7.7. We also confirm that ROSE’s approach did not transform
these loops, and report no gain for the alternative approach.

The remaining benchmarks, with known iteration spaces, can be trans-
formed by both evaluated loop fission techniques: ours and ROSE’s
LoopProcessor. In terms of transformation results, we observed rela-
tively similar results for both techniques. We discovered one interesting
transformation difference, with benchmark gemm, which ROSE handles
differently from our technique.

After transformation, the program must be parallelized by inserting
OpenMP directives. This parallelization step can be fully automatic and
performed with e.g. ROSE or Clava, demonstrating that pipelining the
transformed programs is feasible. For evaluations, we used manual paral-
lelization for our technique and automatic approach for ROSE. However,
we also noted that the automatic insertion of parallelization directives
yielded, in some cases, suboptimal choices, such as parallelization of
loop nests. This added unnecessary overhead to execution time, and
negatively impacted the results obtained for ROSE, e.g. for benchmarks
fdtd-2d and gemm, as observable in the results. It is possible this issue
could be mitigated by providing annotations and more detailed instruc-
tions for applying the parallelization directives. In other experiments
with alternative parallelization tools, we have been successful at finding
optimal parallelization directives automatically, and therefore conclude
it is achievable. We again refer to Table 7.2 for a detailed presentation of
the experimental evaluation results.

https://github.com/statycc/loop-fission/blob/ecbf4e42a438c783266e2f477eb927832b3ee903/alt/gemm.c#L72-L102
https://github.com/statycc/loop-fission/blob/ecbf4e42a438c783266e2f477eb927832b3ee903/alt/gemm.c#L72-L102
https://github.com/statycc/loop-fission/blob/8446e8dbe2e6ab11a392aa7dae64eb53dde4852c/fission/gemm.c#L88-L100
https://github.com/specs-feup/clava/
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Benchmark -O0 -O1 -O2 -O3
Name Size ours rose ours rose ours rose ours rose
3mm XS 2.71 0.07 2.26 0.02 1.71 0.02 1.73 0.01

S 2.80 0.22 3.78 0.09 3.49 0.05 3.35 0.05
M 2.20 0.46 3.44 0.27 3.08 0.13 3.05 0.13
L 2.85 1.92 3.11 1.16 2.89 0.66 2.97 0.66

XL 2.16 2.31 3.13 1.83 2.24 1.05 2.25 1.04
bicg XS 1.45 0.96 1.00 1.00 1.33 1.00 1.33 1.00

S 1.68 0.98 1.08 1.00 2.33 1.01 2.39 1.02
M 1.62 0.97 1.00 0.98 2.36 0.96 2.50 1.00
L 1.61 0.96 0.90 0.94 2.05 0.95 2.06 0.95

XL 1.62 0.96 0.89 0.95 2.13 0.93 2.11 0.94
colormap XS 2.14 1.01 1.50 1.02 1.54 1.04 1.52 1.01

S 2.08 0.97 1.57 1.00 1.54 1.02 1.43 0.99
M 1.98 0.95 1.46 0.96 1.49 0.98 1.19 1.00
L 1.93 1.03 1.42 0.98 1.44 0.98 1.20 1.01

XL 1.82 1.00 1.53 0.97 1.55 0.99 1.16 1.00
conjgrad XS 2.43 1.45 1.82 0.69 2.77 0.65 2.50 0.52

S 2.50 2.39 1.91 2.03 2.84 1.88 2.96 1.65
M 2.56 2.58 1.94 2.66 2.93 2.44 3.20 2.33
L 2.38 2.62 1.73 2.96 2.92 2.92 3.24 2.91

XL 2.29 2.61 1.59 2.55 2.72 2.57 2.99 2.39
cp50 XS 1.90 0.97 1.97 1.00 2.18 1.01 2.09 1.01

S 1.94 0.95 2.00 1.02 2.08 1.00 2.07 1.00
M 1.89 0.98 1.76 0.97 1.83 0.99 1.82 0.98
L 1.74 0.98 1.49 0.96 1.51 0.96 1.50 0.96

XL 1.63 0.99 1.16 0.96 1.07 0.98 1.11 0.96
deriche XS 2.00 0.90 1.93 0.51 2.18 0.53 2.11 0.51

S 2.30 1.49 2.16 1.05 2.17 1.04 2.14 1.03
M 2.68 2.35 2.88 2.20 2.68 2.22 2.72 2.20
L 1.79 1.75 2.08 2.03 2.05 2.05 2.07 2.04

XL 1.12 1.12 1.65 1.61 1.67 1.67 1.60 1.64
fdtd-2d XS 2.34 0.27 1.48 0.05 1.81 0.06 1.15 0.03

S 2.57 0.59 2.68 0.15 3.12 0.17 2.47 0.09
M 2.23 0.82 2.01 0.29 2.47 0.30 2.60 0.24
L 2.15 1.20 1.89 0.65 1.98 0.61 2.16 0.71

XL 2.17 1.38 1.47 0.79 1.50 0.73 1.68 0.86
gemm XS 2.73 0.09 2.33 0.02 2.43 0.02 1.20 0.01

S 2.87 0.21 3.98 0.05 3.09 0.04 3.01 0.02
M 2.57 0.56 3.42 0.12 3.40 0.12 2.73 0.05
L 2.44 1.50 1.79 0.35 1.87 0.36 2.20 0.25

XL 2.44 1.95 1.85 0.60 1.85 0.70 1.96 0.50
gesummv XS 1.33 1.00 0.50 0.67 0.67 0.67 1.00 1.00

S 1.67 0.95 1.08 1.03 2.09 1.03 1.94 1.01
M 1.77 0.98 1.03 1.00 2.19 1.00 2.25 1.00
L 1.71 0.94 0.90 0.93 2.04 0.93 2.08 0.97

XL 1.92 0.98 0.96 0.98 2.03 0.99 2.05 0.98
mvt XS 1.63 1.00 1.40 0.88 1.00 1.00 1.00 1.00

S 1.76 1.01 1.93 1.01 1.73 1.02 1.62 1.00
M 1.55 0.96 1.90 1.00 1.69 1.02 1.70 1.03
L 1.52 0.98 1.64 0.97 1.51 0.98 1.53 1.00

XL 1.52 0.98 1.66 0.99 1.42 1.00 1.42 1.00
remap XS 1.43 0.97 0.54 1.00 0.54 1.00 0.64 1.00

S 2.07 0.94 1.20 1.02 1.13 1.03 1.19 1.01
M 2.43 0.99 3.13 0.96 3.36 0.98 2.89 0.97
L 2.09 1.00 1.34 0.97 1.54 1.02 1.74 1.00

XL 2.11 1.00 1.28 0.99 1.52 0.99 1.57 1.00
tblshft XS 3.19 3.27 2.70 2.65 2.68 2.73 2.82 2.82

S 3.37 3.45 2.82 2.84 2.89 2.86 3.05 3.08
M 3.31 3.62 2.93 3.00 2.79 2.85 3.21 3.19
L 3.05 3.40 2.17 2.32 2.38 2.32 2.40 2.39

XL 3.08 3.48 1.91 1.85 1.64 1.69 1.96 1.96

Table 7.2.: Speedup comparison between
original sequential and transformed par-
allel benchmarks, comparing our loop
fission technique with ROSE Compiler,
for various data sizes and compiler op-
timization levels. We note that the prob-
lems containing only while loop (in
bold) are not transformed by ROSE and
therefore report no gain. The other re-
sults vary depending on parallelization
strategy, but as noted with e. g. problems
conjgrad and tblshft, we obtain sim-
ilar speedup for both fission strategies
when automatic parallelization yields op-
timal OpenMP directives.

Benchmark Description for loop while loop Source
3mm 3D matrix multiplication ✓ PolyBench/C
bicg BiCG sub kernel of BiCGStab linear solver ✓ PolyBench/C

colormap TIFF image conversion of photometric palette ✓ MiBench
conjgrad Conjugate gradient routine ✓ NAS-CG

cp50 Ghostscript/CP50 color print routine ✓ ✓ MiBench
deriche Edge detection filter ✓ PolyBench/C
fdtd-2d 2-D finite different time domain kernel ✓ PolyBench/C
gemm Matrix-multiply C=alpha.A.B+beta.C ✓ PolyBench/C

gesummv Scalar, vector and matrix multiplication ✓ PolyBench/C
mvt Matrix vector product and transpose ✓ PolyBench/C

remap 4D matrix memory remapping ✓ NAS-UA
tblshift TIFF PixarLog compression main table bit shift ✓ ✓ MiBench

Table 7.3.: Descriptions of evaluated par-
allel benchmarks.
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7.5. Implementing mwp

While the dependency analysis used in previous sections was inspired by
the mwp flow technique of Jones and Kristiansen [1], it lacks the quantita- [1]: Jones et al. (2009), A Flow Calculus of

Mwp-bounds for Complexity Analysistive aspects of the latter. One natural challenge was thus to implement an
mwp static analysis that would allow for deducing polynomial bounds
on the growth of variables.

Let us first recall the original mwp flow calculus of Jones and Kristiansen.

A flow calculus of mwp-bounds for complexity analysis

Flows characterize controls from one variable to another, and can be,
in increasing growth rate, of type 0 – the absence of any dependency –
maximum, weak polynomial and polynomial. The bounds on programs
written in the syntax of (the non-parallel fragment of) subsection 7.1
are represented and calculated thanks to vectors and matrices whose
coefficients are elements of the mwp semi-ring.

Definition 7.5.1 (The mwp semi-ring and matrices over it) Letting mwp =

{0, 𝑚, 𝑤, 𝑝} with 0 < 𝑚 < 𝑤 < 𝑝, and 𝛼, 𝛽, 𝛾 range over mwp, the mwp
semi-ring (mwp, 0, 𝑚,+,×) is defined with + = max, 𝛼 × 𝛽 = max(𝛼, 𝛽) if
𝛼, 𝛽 ≠ 0, and 0 otherwise.

We denote Mat(mwp) the matrices over mwp, and, fixing 𝑛 ∈ ℕ, 𝑀 for 𝑛 × 𝑛
matrices over mwp, 𝑀𝑖 𝑗 for the coefficient in the 𝑖th row and 𝑗th column of 𝑀,
⊕ for the componentwise addition, and ⊗ for the product of matrices defined
in a standard way. The 0-element for addition is 0𝑖 𝑗 = 0 for all 𝑖 , 𝑗, and the
1-element for product is 1𝑖𝑖 = 𝑚, 1𝑖 𝑗 = 0 if 𝑖 ≠ 𝑗, and the resulting structure
(Mat(mwp), 0, 1,⊗,⊕) is a semi-ring that we simply write Mat(mwp). The
closure operator ·∗ is𝑀∗ = 1⊕𝑀⊕(𝑀2)⊕ . . ., for𝑀0 = 1,𝑀𝑚+1 = 𝑀⊗𝑀𝑚 .

Below, we let 𝑉1, 𝑉2 be column vectors with values in mwp, 𝛼𝑉1 be the
usual scalar product, and 𝑉1 ⊕ 𝑉2 be defined componentwise. We write
{𝛼
𝑖
} for the vector with 0 everywhere except for 𝛼 in its 𝑖th row, and {𝛼

𝑖
,
𝛽
𝑗
}

for {𝛼
𝑖
} ⊕ {𝛽

𝑗
}.

Replacing in a matrix 𝑀 the 𝑗th column vector by 𝑉 is denoted 𝑀
𝑗
←− 𝑉 .

The matrix𝑀 with𝑀𝑖 𝑗 = 𝛼 and 0 everywhere else is written {𝛼
𝑖
→ 𝑗}, and

the set of variables in the expression e is written Var(e). The assumption
is made that exactly 𝑛 different variables are manipulated throughout
the analyzed program, so that 𝑛-vectors are assigned to expressions – in a
non-deterministic way, to capture larger classes of programs [1, Section 8]
– and 𝑛 × 𝑛 matrices are assigned to commands using the rules presented
Figure 7.8 [1, Section 5].

The intuition is that if ⊢jk C : 𝑀 can be derived, then all the values
computed by Cwill grow at most polynomially w.r.t. its inputs [1, Theorem
5.3], e.g. will be bounded by max(®𝑥, 𝑝1( ®𝑦)) + 𝑝2(®𝑧), where 𝑝1 and 𝑝2 are
polynomials and ®𝑥 (resp. ®𝑦, ®𝑧) are 𝑚-(resp. 𝑤-, 𝑝-)annotated variables
in the vector for the considered output. Since the derivation system
is non-deterministic, multiple matrices and polynomial bounds – that
sometimes coincide – may be assigned to the same program. Furthermore,
the coefficient at 𝑀ij carries quantitative information about the way Xi

depends on Xj, knowing that 0- and 𝑚-flows are harmless and without
constraints, but that 𝑤- and 𝑝- flows are more harmful w.r.t. polynomial
bounds and need to be handled with care, particularly in loops – hence
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E1
⊢jk Xi : {𝑚𝑖 }

E2
⊢jk e : {𝑤𝑖 | Xi ∈ Var(e)}

⊢jk Xi : 𝑉1 ⊢jk Xj : 𝑉2 (★ ∈ {+,−}) E3
⊢jk Xi★ Xj : 𝑝𝑉1 ⊕ 𝑉2

⊢jk Xi : 𝑉1 ⊢jk Xj : 𝑉2 (★ ∈ {+,−}) E4
⊢jk Xi★ Xj : 𝑉1 ⊕ 𝑝𝑉2

(a) Rules for assigning vectors to expressions

⊢jk e : 𝑉
A

⊢jk Xj = e : 1
𝑗
←− 𝑉

⊢jk C1 : 𝑀1 ⊢jk C2 : 𝑀2 C
⊢jk C1; C2 : 𝑀1 ⊗ 𝑀2

⊢jk C1 : 𝑀1 ⊢jk C2 : 𝑀2 I
⊢jk if b then C1 else C2 : 𝑀1 ⊕ 𝑀2

⊢jk C : 𝑀 (∀𝑖 , 𝑀∗𝑖𝑖 = 𝑚)
L

⊢jk loop Xl {C} : 𝑀∗ ⊕ {𝑝l→ 𝑗 | ∃𝑖 , 𝑀∗𝑖 𝑗 = 𝑝}

⊢jk C : 𝑀 (∀𝑖 , 𝑀∗𝑖𝑖 = 𝑚 and ∀𝑖 , 𝑗 , 𝑀∗𝑖 𝑗 ≠ 𝑝)
W

⊢jk while b do {C} : 𝑀∗

(b) Rules for assigning matrices to commands Figure 7.8.: Original non-deterministic
(‘Jones-Kristiansen’) flow analysis rules

the condition on the L and W rules. The derivation may fail – some
programs may not be assigned a matrix – , if at least one of the variables
used in the body of a loop depends ‘too strongly’ upon another, making
it impossible to ensure polynomial bounds on the loop itself. We will
use the following example as a common basis to discuss possible failure,
non-determinism, and our improvements.

Example 7.5.1 Consider loop X3 {X2 = X1 + X2}. The body of the loop

command admits three different derivations, obtained by applying A
to one of the three derivation of the expression X1 + X2, that we name
𝜋0, 𝜋1 and 𝜋2: From 𝜋0, the derivation of loop X3 {X2 = X1 + X2} can be
completed using A and L, but since L requires having only 𝑚 coefficients
on the diagonal, 𝜋1 cannot be used to complete the derivation, because
of the 𝑝 coefficient in a box below:

𝜋0······
⊢jk X1 + X2 :

(
𝑝
𝑚
0

)
A

⊢jk X2 = X1 + X2 :
(
𝑚 𝑝 0
0 𝑚 0
0 0 𝑚

)
L

⊢jk loop X3 {X2 = X1 + X2} :
(
𝑚 𝑝 0
0 𝑚 0
0 𝑝 𝑚

)
𝜋1······

⊢jk X1 + X2 :
( 𝑚
𝑝
0

)
A

⊢jk X2 = X1 + X2 :
(
𝑚 𝑚 0
0 𝑝 0
0 0 𝑚

)
Similarly, using A after 𝜋2 gives a 𝑤 coefficient on the diagonal and
makes it impossible to use L, hence only one derivation for this program
exists.

Implementing mwp: challenges

Implementing the mwp analysis however raised two challenges. The first
was that the interpretation of programs as flow matrices was only partial:
if some variable could not be given a polynomial bound, the derivation
system implied that no rules could be applied. This is easily managed
through a modified derivation system and extending the semi-ring with
an infinite value.

The second challenge was more complicated: the derivation system
proposed by Jones and Kristiansen was non-deterministic. This is an
essential property of their approach, as it allows to capture more programs.
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But the question of whether a given program can be given an mwp bound
is strongly non-deterministic and conjectured to be NP-complete. We
manage this complication by:

▶ internalising choices in the semi-ring: using the isomorphism
𝐴 → M𝑛(𝑆) � M𝑛(𝐴 → 𝑆), we consider matrices over some
kinds of polynomials over the mwp semiring. A choice (i.e. a non-
deterministic branch) then corresponds to an assignment of the
choice variables;

▶ these polynomials can be represented w.r.t. a basis that allows
for efficient implementation of basic operations (using techniques
inspired from work on Gröbner bases);

▶ we collect during the analysis the set of impossible assignments for
these polynomials, allowing to decide whether a given program
has a mwp bound without computing such a bound explicitly;

▶ we implement a specific iterator that allows to produce all mwp
bounds in an efficient manner.

While this would not make the problem polynomial (where it NP-
complete initially), it opens the question of whether deciding the existence
of a bound (without computing it) is polynomial. Moreover, we prove
the analysis to be compositional, allowing one to compute the possible
bounds once and for all, reusing the result in programs calling the
program as a subroutine. In practice, this makes the analysis usable: a
potential programmer may check the existence of mwp bounds while
writing up the code for a given function, and compute the set of all
bounds only once the code is finalised; these bounds can then be used in
the analysis of other programs calling it without having to recompute
the bounds each time.

A deterministic, always-terminating, declension of the
mwp analysis

The problem of finding a derivation in the original calculus is in
NPtime [1, Theorem 8.1], and conjectured NPtime-hard. But since all
the non-determinism is in the rules to assigning a vector, the potentially
exponential number of derivations are actually extremely similar. Hence,
instead of having the analysis stop when failing to establish a derivation
and re-starting from scratch, storing the different vectors and constructing
the derivation while keeping all the options open seems to be a better
strategy, but, as we have seen, this causes a memory blow-up. We address
it by fine-tuning the internal machinery: to represent non-determinism,
we let the matrices take as values either functions from choices to coeffi-
cients in mwp or coefficients in mwp, so that instead of mapping choices
to derivations, all the derivations are represented by the same matrix
that internalizes the different choices. We discuss this improvement in
subsection 7.5, which results in a notable gain: a program involving 6
variables, with 3 choices, would now be assigned a (unique) 6 × 6 matrix
that requires 66 coefficients instead of the 324 we previously had – this is
because 30 coefficients are ‘simple’ values in mwp, and 6 are functions
from a set of choices {0, 1, 2} to values in mwp, each represented with 6
coefficients.

For the choices that give coefficients fulfilling the side condition of L or W,
the derivation can proceed as usual, but when a particular choice gives a
coefficient that violates it, we decided against simply removing it. Instead,
to guarantee that all derivations always terminate, we mark that choice by
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(★ ∈ {+,−})
EA

⊢ Xi★ Xj : (0 ↦→ {𝑚𝑖 ,
𝑝

𝑗
}) ⊕ (1 ↦→ {𝑝

𝑖
,𝑚𝑗 }) ⊕ (2 ↦→ {𝑤𝑖 ,𝑤𝑗 })

EM
⊢ Xi ∗ Xj : {𝑤𝑖 ,𝑤𝑗 }

ES
⊢ Xi : {𝑚𝑖 }

(a) Rules for assigning vectors to expressions

⊢ e : 𝑉
A

⊢ Xj = e : 1
𝑗
←− 𝑉

⊢ C1 : 𝑀1 ⊢ C2 : 𝑀2 C
⊢ C1; C2 : 𝑀1 ⊗ 𝑀2

⊢ C1 : 𝑀1 ⊢ C2 : 𝑀2 I
⊢ ifbthenC1elseC2 : 𝑀1 ⊕ 𝑀2

⊢ C : 𝑀
L∞

⊢ loopX{C} : 𝑀∗ ⊕ {∞𝑗 → 𝑗 | 𝑀∗𝑗 𝑗 ≠ 𝑚} ⊕ {𝑝
𝑙
→ 𝑗 | ∃𝑖 , 𝑀∗𝑖 𝑗 = 𝑝}

⊢ C : 𝑀
W∞

⊢ whilebdo{C} : 𝑀∗ ⊕ {∞𝑗 → 𝑗 | 𝑀∗𝑗 𝑗 ≠ 𝑚} ⊕ {∞𝑖 → 𝑗 | 𝑀∗𝑖 𝑗 = 𝑝}

(b) Rules for assigning matrices to commands Figure 7.9.: Deterministic improved flow
analysis rules

indicating that it would not provide a polynomial bound. This requires
extending the mwp semi-ring with a special value ∞ that represents
failure in a local way, marking non-polynomial flows, and is detailed in
subsection 7.5. As a by-product, this enables fine-grained information
on programs that do not have polynomially bounded growth, since the
precise dependencies that break this growth rate can be localized.

Taken together (subsection 7.5), our improvements ensure that exactly
one matrix will always be assigned to a program while carrying over the
correctness of the original analysis. We give in Figure 7.9 the deterministic
system we are introducing in full, but will gently introduce it though
the remaining parts of this section: note that the rules A, C and I are
unchanged, up to the fact that the matrices, sum and product are in a
different semi-ring.

Internalizing non-determinism: the choice data flow
semi-rings

Internalizing the choice requires altering the semi-ring used in the
analysis: we want to replace the three vectors over mwp that can be
assigned to an expression by a single vector over {0, 1, 2} → mwp that
captures the same three choices. For a program needing to decide 𝑝 times
between the 3 available choices, this means replacing the 3 × 𝑝 different
matrices in Mat(mwp) by a single matrix in Mat({0, 1, 2}𝑝 → mwp). For
any strong semi-ring 𝕊 and family of sets (𝐴𝑖)𝑖=1,...,𝑝 , both 𝐴𝑖 → 𝕊 and
Mat(∏𝑝

𝑖=1 𝐴𝑖 → 𝕊) are semi-rings, using the usual cartesian product of
sets, and there exists an isomorphism Mat(∏𝑝

𝑖=1 𝐴𝑖 → 𝕊) � ∏𝑝

𝑖=1 𝐴𝑖 →
Mat(𝕊). This dual nature of the semi-ring considered is useful:

▶ the analysis will now assign an element𝑀 ofMat(∏𝑝

𝑖=1 𝐴𝑖 → mwp)
to a program;

▶ representing 𝑀 as an element of
∏𝑝

𝑖=1 𝐴𝑖 →Mat(mwp) allows one
to use an assignment ®𝑎 = (𝑎1 , . . . , 𝑎𝑝) ∈

∏𝑝

𝑖=1 𝐴𝑖 to produce a matrix
𝑀[®𝑎] ∈Mat(mwp), recovering the mwp-flow that would have been
computed by making the choices 𝑎1 , . . . , 𝑎𝑝 in the derivation.

Remark 7.5.1 As the unique degree of non-determinism to assign a matrix
to commands is 3, our modification of the analysis flow consists simply of
recording the different choices by letting 𝐴𝑖 = {0, 1, 2} for all 𝑖 = 1, . . . , 𝑝
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where 𝑝 is the number of times a choice had to be taken. Starting with
subsection 7.5, function calls will require potentially different sets 𝐴𝑖 .

Notations 7.5.1. In the following and in the implementation alike, we will
denote a function (𝑎0

1 × · · · × 𝑎0
𝑝 ↦→ 𝛼0) + · · · + (𝑎𝑘1 × · · · × 𝑎𝑘𝑝 ↦→ 𝛼𝑘) in

𝐴𝑝 → mwp with Card(𝐴) = 𝑘 by, omitting the product, (𝛼0𝛿0
𝑎0

1
· · · 𝛿𝑝

𝑎0
𝑝

) +

· · · + (𝛼𝑘𝛿0
𝑎𝑘1
· · · 𝛿𝑝

𝑎𝑘𝑝
), with 𝛿

𝑗

𝑖
= 𝑚 if the 𝑗th choice is 𝑖, 0 otherwise.

Example 7.5.4 will justify and explain this choice.

Our derivation system replaces the E3 and E4 rules with a single rule EA

(‘additive’), and splits E2 in two exclusive rules, EM for ‘multiplicative’
and ES for ‘simple’ (atomic) expressions – Theorem 7.5.3 will prove how
they are equivalent.

Example 7.5.2 We represent the three possibles vectors
(
𝑝
𝑚
0

)
,
( 𝑚
𝑝
0

)
and(

𝑤
𝑤
0

)
from Example 7.5.1 with a single vector(

𝑝𝛿0
0+𝑚𝛿0

1+𝑤𝛿0
2

𝑚𝛿0
0+𝑝𝛿0

1+𝑤𝛿0
2

0

)
,

that can be read as (
{0↦→𝑝,1↦→𝑚,2↦→𝑤}
{0↦→𝑚,1↦→𝑝,2↦→𝑤}

0

)
,

where we write 0 for {0 ↦→ 0, 1 ↦→ 0, 2 ↦→ 0}7. Since in particular8, 7: The implementation supports both
coefficients from mwp and coefficients
from {0, 1, 2}𝑝 → mwp, c.f. e. g. a
simple assignment example assign_-
expression.c.
8: While the latter lemma applies to al-
gebras of square matrices, a similar re-
sult holds for rectangular matrices of a
fixed size; the algebraic structure is no
longer that of a semi-ring as rectangular
matrices do not possess a proper multi-
plication, but the proof can be adapted to
show the existence of an isomorphism of
modules between the considered spaces.

Mat({0, 1, 2} → mwp) � {0, 1, 2} →Mat(mwp), the obtained vector can
be rewritten as

0 ↦→
(
𝑝
𝑚
0

)
, 1 ↦→

( 𝑚
𝑝
0

)
, 2 ↦→

(
𝑤
𝑤
0

)
.

Internalizing failure: de-correlating derivations and
bounds

The original analysis stops when detecting a non-polynomial flow, puts
an end to the chosen strategy (i. e. set of choices) and restarts from scratch
with another one. We adapt the rules so that every derivation can be
completed even in the presence of non-polynomial flows, thanks to a
new top element,∞, representing failure in a local way.

Ignoring our previous modification in this subsection, the semi-ring
mwp∞ we need to consider is (mwp∪ {∞}, 0, 𝑚,+∞ ,×∞), with∞ > 𝛼 for
all 𝛼 ∈ mwp, +∞ = max as before, and 𝛼 ×∞ 𝛽 = 0 if 𝛼, 𝛽 ≠ ∞ and 𝛼 or 𝛽
is 0, max(𝛼, 𝛽) otherwise. This different condition in the definition of ×∞
ensures that once non-polynomial flows have been detected, they cannot
be erased (as∞×∞ 0 = ∞).

The only cases where the original analysis may fail is if the side conditions
of L or W (Figure 7.8) are not met. We replace those by L∞ and W∞
(Figure 7.9), which replace the problematic coefficients with∞, marking
non-polynomial dependencies, and carry on the analysis.

Example 7.5.3 The program from Example 7.5.1 would now receive three
derivations (omitting the one obtained from 𝜋0, as the resulting matrix

https://statycc.github.io/pymwp/demo/#basics_assign_expression.c
https://statycc.github.io/pymwp/demo/#basics_assign_expression.c
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is identical):

𝜋1·····
⊢ X1 + X2 :

( 𝑚
𝑝
0

)
A

⊢ X2 = X1 + X2 :
( 𝑚 𝑚 0

0 𝑝 0
0 0 𝑚

)
L∞

⊢ loopX3{X2 = X1 + X2} :
(
𝑚 𝑝 0
0 ∞ 0
0 𝑝 𝑚

)
E2

⊢ X1 + X2 :
(
𝑤
𝑤
0

)
A

⊢ X2 = X1 + X2 :
(
𝑚 𝑤 0
0 𝑤 0
0 0 𝑚

)
L∞

⊢ loopX3{X2 = X1 + X2} :
(
𝑚 𝑤 0
0 ∞ 0
0 0 𝑚

)
Of course, neither of those two derivations would yield polynomial bound
– since they contain∞ coefficients – but it becomes possible to determine
that the last one is ‘better’ – since

( 𝑝
∞
𝑝

)
>

(
𝑤
∞
0

)
– and to observe how their

‘failure’ would propagate in larger programs, possibly establishing that
one fares better than the other in terms of non-polynomial growths. This
could imply, for instance, that particular programs without polynomial
bounds could still be considered ‘reasonable’ if they are exponential only
in some variables that are known to have smaller values in input.

Merging the improvements: illustrations and proofs

We prove that our system captures the original system in the sense that
set aside∞ coefficients, both systems agree (Theorem 7.5.3), but also that
exactly one matrix is produced per program (Theorem 7.5.2) – i. e. that we
can analyze as many programs as originally, and still be correct regarding
the bounds. Before doing so, we would like to give more specifics on our
system, by combining the semi-rings and intuitions from the previous
two subsections. We have discussed our ‘axiomatic’ (EA, EM, ES) and
‘loop’ rules (L∞ and W∞), but remain to discuss the rules for assignment
(A), if (I) and composition (C) – which is where both improvements
meet. Mathematically speaking, adopting the semi-ring defined over
matrices with coefficients in {0, 1, 2}𝑝 → mwp ∪ {∞} is straightforward,
and we simply write ⊕ and ⊗ the operations resulting from merging
the two transformations. We discuss in subsection 10 how, however,
those operations are computationally costly and how we address this
challenge.

Example 7.5.4 Using our deterministic system presented in Figure 7.9,
consider the following:

EA
⊢ X1 + X2 : 𝑉

A
⊢ X1 = X1 + X2 : 1

1←− 𝑉

EA
⊢ X1 − X3 : 𝑉′

A
⊢ X1 = X1 − X3 : 1

1←− 𝑉′
I

⊢ if b then {X1 = X1 + X2} else {X1 = X1 − X3} : (1 1←− 𝑉) ⊕ (1 1←− 𝑉′)

where

𝑉 = 0 ↦→ {𝑚1 ,
𝑝

2 } ⊕ 1 ↦→ {𝑝1 ,
𝑚
2 } ⊕ 2 ↦→ {𝑤1 ,

𝑤
2 }

𝑉 ′ = 0 ↦→ {𝑚1 ,
𝑝

3 } ⊕ 1 ↦→ {𝑝1 ,
𝑚
3 } ⊕ 2 ↦→ {𝑤1 ,

𝑤
3 }

1
1←− 𝑉 �

(
(0↦→𝑚)⊕(1 ↦→𝑝)⊕(2↦→𝑤) 0 0
(0↦→𝑝)⊕(1 ↦→𝑚)⊕(2↦→𝑤) 𝑚 0

0 0 𝑚

)
=

(
𝑚𝛿0

0⊕𝑝𝛿0
1⊕𝑤𝛿0

2 0 0
𝑝𝛿0

0⊕𝑚𝛿0
1⊕𝑤𝛿0

2 𝑚 0
0 0 𝑚

)
1

1←− 𝑉 ′ �
(
(0↦→𝑚)⊕(1 ↦→𝑝)⊕(2↦→𝑤) 0 0

0 𝑚 0
(0↦→𝑝)⊕(1 ↦→𝑚)⊕(2↦→𝑤) 0 𝑚

)
=

(
𝑚𝛿1

0⊕𝑝𝛿1
1⊕𝑤𝛿1

2 0 0
0 𝑚 0

𝑝𝛿1
0⊕𝑚𝛿1

1⊕𝑤𝛿1
2 0 𝑚

)
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Some care is needed to perform the addition for the I rule: the choices in
the left and right branches are independent, so we must use coefficients in
{0, 1, 2}2 → mwp for the 23 choices. While the mapping notation would
require to use positions to describe which choice is being refereed to, the
𝛿 notation makes it immediate, as it encodes in the second value of 𝛿
that two choices are considered, numbering the choice in the left branch
0. Hence we can sum the coefficients and obtain the matrix that can be
observed in our implementation by analyzing example7.c.

Example 7.5.5 Our deterministic system now assigns to loop X3 {X2 =

X1 + X2} from Example 7.5.1 the unique matrix(
𝑚 (0↦→𝑝)⊕(1 ↦→𝑚)⊕(2↦→𝑤) 0
0 (0↦→𝑚)⊕(1 ↦→∞)⊕(2↦→∞) 0
0 (0↦→𝑝)⊕(1 ↦→0)⊕(2↦→0) 𝑚

)
=

(
𝑚 𝑝𝛿0

0⊕𝑚𝛿0
1 ⊕𝑤𝛿0

2 0
0 𝑚𝛿0

0⊕∞𝛿0
1⊕∞𝛿0

2 0
0 𝑝𝛿0

0⊕0𝛿0
1⊕0𝛿0

2 𝑚

)
where we observe that

1. only one choice, one assignment, 0, gives a matrix without ∞
coefficient, corresponding to the fact that, in the original system,
only 𝜋0 could be used to complete the proof,

2. the choice impacts the matrix locally, the coefficients being mostly
the same, independently from the choice,

3. the influence of X2 on itself is where possible non-polynomial
growth rates lies, as the ∞ coefficient are in the second column,
second row.

We are now in possession of all the material and intuitions needed to
state the correspondence between our system and the original one of
Jones and Kristiansen.

Theorem 7.5.2 (Determinancy and termination) Given a program 𝑃, there
exists unique 𝑝 ∈ ℕ and 𝑀 ∈Mat({0, 1, 2}𝑝 → mwp∞) such that ⊢ 𝑃 : 𝑀.

Theorem 7.5.3 (Adequacy) If ⊢ 𝑃 : 𝑀, then for all ®𝑎 ∈ 𝐴𝑝 , ⊢jk 𝑃 : 𝑀[®𝑎] iff
∞ ∉ 𝑀[®𝑎].

Corollary 7.5.4 (Soundness) If ⊢ 𝑃 : 𝑀 and there exists ®𝑎 ∈ 𝐴𝑝 such that
∞ ∉ 𝑀[®𝑎], then every value computed by 𝑃 is bounded by a polynomial in the
inputs.

This proves that the two analyses coincide, when excluding∞, and that
we can re-use the original proofs of existence of polynomial bounds.
However, our alternative definition should be understood as an impor-
tant improvement, as it enables a better proof-search strategy while
optimizing the memory usage, and hence enables the implementation
(subsection 13). It also lets the programmer gain more fine-grained feed-
back, and illustrates the flexibility of the analysis: the latter will also be
demonstrated by the improvements we discuss in the next section.

Extending and improving the analysis: functions and
efficiency

To improve this analysis, one could try to extract a tight bound, to certify
it, or to port it to a compiler’s intermediate representation. Adding
constant values is arguably immediate [1, p. 3] but handling pointers,
even if technically possible, would probably require significant work.
This illustrates at the same time the flexibility of the analysis, and the

https://statycc.github.io/pymwp/demo/#implementation_paper_example7.c
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distance separating ICC-inspired techniques from their usage on actual
programs. We decided to narrow this gap along two axes: the first one
consists of allowing function definitions and calls in our syntax. It is
arguably a small improvement, but illustrates nicely the compositionality
of the analysis, and includes recursively defined functions. The second
extension intersects the theory and the implementation: it details how our
semi-ring structure can be leveraged to maintain a tractable algorithm to
compute costly operations on our matrices, and to separate the problem
of deciding if a bound exists from computing its form.

Leveraging compositionality to analyze function calls. Thanks to its
compositionality, this analysis can easily integrate functions and proce-
dures, by re-using the matrix and choices of a program implementing
the function called. We begin by adding to the syntax the possibility of
defining multiple functions and calling them:

Definition 7.5.2 (Functions) Letting R (resp. f) range over variables (resp.
function names), we add function calls9 to the commands and allow function 9: Function calls that discard the output

– procedures – could also be dealt with
easily, but are vacuous in our effect-free,
in particular pointer-free, language

declarations:

C BXi = f(X1, . . ., Xn) F B f(X1, . . ., Xn){C; return R}

In a function declaration, f(X1, . . ., Xn) is called the header, and the body is
simply C (i. e. return R is not part of the body). A program is now a series of
function declarations such that all the function calls refer to previously declared
functions – we deal with recursive calls below – and a chunk is a series of
commands.

Now, given a function declaration computing 𝑓 , we can obtain the matrix
𝑀 𝑓 by analyzing the body of 𝑓 as previously done. It is then possible to
store the assignments ®𝑎0 , . . . , ®𝑎𝑘 , for which no∞ coefficients appear10, and 10: Allowing ∞ coefficients would not

change the method described nor its re-
sults, but it does not seem relevant to
allow calling functions that are not poly-
nomially bounded.

to project the resulting matrices to only keep the vector at R that provides
quantitative information about all the possible dependencies of the output
variable Rw.r.t. input values, possibly merging choices leading to the same
result. After this, we are left with a family (𝑀 𝑓 [®𝑎0])|R , . . . , (𝑀 𝑓 [®𝑎𝑘])|R of
vectors – as the syntax here is restricted to functions with a single output
value, even if accommodating multiple return values would be dealt
with the same way – that we can re-use when calling the function.

The analysis of the command calling 𝑓 is then dealt with the F rule
below:

F
⊢ Xi = F(X1,. . ., Xn) : 1

i←− (((𝑀 𝑓 [®𝑎0])|R)𝛿𝑐0 ⊕ · · · ⊕ ((𝑀 𝑓 [®𝑎𝑘])|R)𝛿𝑐𝑘)

This rule introduces a choice 𝑐 over 𝑘 possible matrices, and it is possible
that 𝑘 ≠ 3, but this is not an issue, since our semi-ring construction can
accommodate any set of choice 𝐴.

Example 7.5.6 Consider the following two programs Q and P:

Q=

int f(X1, X2)
{
while b do {X2=X1+X1};
return X2;

}

P =

int foo(X1, X2)
{
X2=X1+X1;
X1=f(X2, X2);

}
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We first have ⊢ X2 = X1 + X1 : 𝑉 for

𝑉 =

(
𝑚 𝑝𝛿0

0⊕𝑝𝛿0
1⊕𝑤𝛿0

2
0 0

)
,

and since 𝑉∗ = 𝑉 , applying W∞ gives

⊢ Q :
(
𝑚 ∞𝛿0

0⊕∞𝛿0
1⊕𝑤𝛿0

2
0 𝑚

)
.

Noting that only one choice gives an∞-free matrix, we can now carry on
the analysis of P:

······
⊢ X2 = X1 + X1 : 𝑉

F
⊢ X1 = f(X2, X2) : 1

1←− (( 𝑤𝑚 ) 𝛿𝑐0) C
⊢ P : 𝑉 ⊗ 1

1←− (( 𝑤𝑚 ) 𝛿𝑐0)

In this particular case, the 𝑐 choice can be discarded, since only one
option is available.

Now, to prove that the F rule faithfully extends the analysis (Theo-
rem 7.5.6), i. e. preserves Corollary 7.5.4, we prove that the analysis of
the program ‘inlining’ the function call – as defined below – is, up to
some bureaucratic variable manipulation and ignoring some∞ coeffi-
cients, the same as the analysis resulting from using our rule. Intuitively,
this mechanism provides the expected result because the choices in the
function do not affect the program calling it, and because their sets of
variables are disjoint – except for the return variable.

Definition 7.5.3 (In-lining function calls) Let 𝑃 be a chunk containing a call
to the function 𝑓 , and 𝐹 be the function declaration computing the function 𝑓 .
The context 𝑃[·], a chunk containing a slot [·], is obtained by replacing in 𝑃
the function call Xi=f(X1, . . ., Xn), with X’1=X1; . . .; X’n=Xn; [·] Xi=R, for
R, X’1, . . ., X’n fresh variables added to the header containing the chunk.

The chunk 𝐹̃ is obtained from the body of 𝐹 by renaming the input variables
to X’1, . . ., X’n, and the variable returned by 𝐹 to R. The code 𝑃[𝐹] is finally
obtained by computing the chunk 𝐹̃, and inserting it in place of the symbol [·]
in 𝑃[·].

That𝑃 and𝑃[𝐹]have, at the end of their executions, the same values stored
in the variables of 𝑃 is straightforward in our imperative programming
language.

Example 7.5.7 The in-lining of Q in P from Example 7.5.6 would give the
following chunk Q̃ and context P[·], P[Q] being obtained by replacing in
the latter [·]with the former:

𝑄̃ =
while b do {R=X’1+X’1}; 𝑃[·] =

int foo(X1, X2, X’1, R)
{

X2=X1+X1;
X’1=X2;
[·]
X1=R;

}

The analysis of P (excluding the function call) and Q is implemented at
example15a.c, and of P[Q] at example15b.c: this latter diverges with

https://statycc.github.io/pymwp/demo/#implementation_paper_example15_a.c
https://statycc.github.io/pymwp/demo/#implementation_paper_example15_b.c
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Example 7.5.6 only up to projection and∞-coefficients that are removed
by F but not when in-lining the function call.

Now, we need to prove that the matrices 𝑀(𝑃) – obtained by analyzing 𝑃
and using the F rule for Xi=f(X1, . . ., Xn); – and 𝑀(𝑃[𝐹]) – obtained by
analyzing the inlined 𝑃[𝐹] – are the same. However, to avoid conflict with
the variables and to project the matrices on the relevant values, some
bureaucracy is needed: we write Π𝑃(𝑀(𝑃[𝐹])) (resp. (1−Π𝑃)(𝑀(𝑃[𝐹])))
the projection of 𝑀(𝑃[𝐹]) onto the variables in (resp. not in) 𝑃. Some
non-deterministic choices may appear within the (modified) chunk 𝐹̃
inside 𝑃[𝐹], i. e.

▶ the coefficients of 𝑀(𝑃) are elements of the semi-ring
∏𝑝+1

𝑖=1 𝐴𝑖 →
Mat(mwp), with one particular choice corresponding to the F rule
– we write the corresponding index 𝑖0;

▶ the coefficients of𝑀(𝑃[𝐹]) are elements of the semi-ring
∏𝑝+𝑘

𝑖=1 𝐵𝑖 →
Mat(mwp), where 𝑘 choices are made within the chunk 𝐹̃ – we
write the corresponding indexes 𝑗1 , 𝑗2 , . . . , 𝑗𝑘 (note these are in fact
consecutive indexes).

Notations 7.5.5. We note𝜋 : {1, . . . , 𝑝+ 𝑘} → {1, . . . , 𝑝+1} the projection
of the choices in 𝑃[𝐹] onto the corresponding choices in 𝑃, i. e.

𝜋(𝑗) =

𝑗 if 𝑗 < 𝑗1
𝑖0 if 𝑗1 ⩽ 𝑗 < 𝑗𝑘
𝑗 − 𝑘 + 1 if 𝑗𝑘 < 𝑗

We note that each matrix used as axiom in the function call corresponds to
a specific assignment on indexes 𝑗1 , . . . , 𝑗𝑘 . We write Ψ : 𝐴𝑖0 →

∏𝑗𝑘
𝑖=𝑗1

𝐵𝑖

the corresponding injection, extended to Ψ̄ :
∏𝑝+1

𝑖=1 𝐴𝑖 →
∏𝑝+𝑘

𝑖=0 𝐵𝑖
straightforwardly.

Theorem 7.5.6 For all ®𝑎 in
∏𝑝+1

𝑖=1 𝐴𝑖 ,

(𝑀(𝑃))[®𝑎] = (1 −Π𝑃)(𝑀(𝑃[𝐹]))[Ψ̄(®𝑎)],

and for all 𝛽 ∈∏𝑝+𝑘
𝑖=0 𝐵𝑖 which does not belong to the image of Ψ̄,

(1 −Π𝑃)(𝑀(𝑃[𝐹])[𝛽])

contains∞.

Proof. It is sufficient to prove it for the simplest chunk 𝑃 containing only
one command Xi = f(X1, . . ., Xn). This comes from the compositional
nature of the analysis, as a sequence of commands is assigned the product
of the matrices of each individual command. Then, checking the theorem
in this case is a straightforward, though tedious (due to keeping track of
all indices), computation. R

Integrating recursive calls, the easy way. The question of dealing with
self-referential, or recursive, calls, naturally arises when extending to
function calls. It turns out that our approach makes such cases easy to
handle.

A program implementing a function rec calling itself cannot use the
F rule presented above as is, since the result of the analysis of rec is
precisely what we are trying to establish. However, if rec takes two input
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variables X1 and X2 and its return value is assigned to a third variable X3,
then we already know that the vector at 3 will need to be replaced by the
vector capturing the dependency between X1, X2, and the return variable
of rec (which we will take to be X3 in our example). The solution consists
in replacing the actual values in this vector by variables 𝛼, 𝛽 ranging over
values in mwp∞, terminating the analysis with those variables, and then
to resolve the equation – which is easy given the small size of the mwp∞
semiring.

Example 7.5.8 As an example11, consider the following program: 11: Where we use variables that are not
parameters, and where our recursive call
does not terminate: we are focusing on
growth rates and not on termination, and
keep the example compact.

int rec(X1, X2)
{
X1 = X1 + X2;
X3 = rec(X1, X2);
return X3;

}

and compute the corresponding matrix:(
𝑚𝛿0

0⊕𝑝𝛿0
1⊕𝑤𝛿0

2 0 0
𝑝𝛿0

0⊕𝑚𝛿0
1⊕𝑤𝛿0

2 𝑚 0
0 0 𝑚

)
⊗1

3←−
( 𝛼
𝛽
0

)
=

(
𝑚𝛿0

0⊕𝑝𝛿0
1⊕𝑤𝛿0

2 0 𝛼𝑚𝛿0
0⊕𝛼𝑝𝛿0

1⊕𝛼𝑤𝛿0
2

𝑝𝛿0
0⊕𝑚𝛿0

1⊕𝑤𝛿0
2 𝑚 𝛼𝑝𝛿0

0⊕𝛼𝑚𝛿0
1⊕𝛼𝑤𝛿0

2⊕𝛽
0 0 0

)
Using the assignments 0, 1 and 2 gives(

𝑚 0 𝛼𝑚
𝑝 𝑚 𝛼𝑝⊕𝛽
0 0 0

)
,

(
𝑝 0 𝛼𝑝
𝑚 𝑚 𝛼𝑚⊕𝛽
0 0 0

)
, and

(
𝑤 0 𝛼𝑤
𝑤 𝑚 𝛼𝑤⊕𝛽
0 0 0

)
,

and since the third vector should be equal to
( 𝛼
𝛽
0

)
, this gives three systems

of equations:{
𝛼𝑚 = 𝛼

𝛼𝑝 ⊕ 𝛽 = 𝛽

{
𝛼𝑝 = 𝛼

𝛼𝑚 ⊕ 𝛽 = 𝛽

{
𝛼𝑤 = 𝛼

𝛼𝑤 ⊕ 𝛽 = 𝛽

The smaller solution to the first (resp. second, third) equational system
is {𝛼 = 𝑚; 𝛽 = 𝑝} (resp. {𝛼 = 𝑝; 𝛽 = 𝑝} , {𝛼 = 𝑤; 𝛽 = 𝑤}), and as a
consequence, we find two meaningful solutions (all others being larger
than those):

( 𝑚
𝑝
0

)
and

(
𝑤
𝑤
0

)
.

Taking advantage of polynomial structure to compute
efficiently

Ensuring that the analysis is tractable is an important part of our con-
tribution. For a program accepting 𝑛 different derivations and having 𝑘
different derivations that cannot be completed, the original flow calculus
must run at most 𝑘 + 1 times to find one derivation, while our analysis
outputs the 𝑘 + 𝑛 different derivations in one run, and then sorts them –
as discussed next – by listing all the evaluations and looking for∞ values.
In this task, the C rule, that lets building programs from commands,
is obviously crucial and consists simply in multiplying two matrices:
however, since we are internalizing the choices, those matrices contain a
mixture of functions from choices to coefficients in mwp∞ and of coeffi-
cients in mwp. Multiplying such matrices is more costly, but also essential:
an 8-line program such as explosion.c requires to multiply elements
of its matrix 34,992 times12. This forces to represent and manipulate 12: The need to optimize functions is

made even more obvious when we dis-
cuss benchmarking in paragraph 13.

https://statycc.github.io/pymwp/demo/#other_explosion.c
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the elements of
∏𝑝

𝑖=1 𝐴𝑖 → Mat(mwp) – setting aside ∞ coefficients
for a moment – cleverly: simple comparison showed that the improved
algorithm presented below made the analysis roughly five times faster.

As discussed in Notations 7.5.1, elements of this semi-ring are repre-
sented as polynomials w.r.t. the generating set given by the functions
𝛿
𝑗

𝑖
:

∏𝑝

𝑖=1 𝐴𝑖 → mwp defined by 𝛿
𝑗

𝑖
(𝑎1 , . . . , 𝑎𝑝) = 𝑚 if 𝑎 𝑗 = 𝑖 and

𝛿
𝑗

𝑖
(𝑎1 , . . . , 𝑎𝑝) = 0 otherwise, i. e. an element of

∏𝑝

𝑖=1 𝐴𝑖 → mwp is
represented as a polynomial

∑𝑛
𝑖=1 𝛼𝑖

∏𝑘𝑖
𝑗=1 𝛿

𝑏𝑖 , 𝑗
𝑎𝑖 , 𝑗 with 𝛼𝑖 ∈ mwp.

This basis has an important property: the monomials 𝛼𝑖
∏𝑘𝑖

𝑗=1 𝛿
𝑏𝑖 , 𝑗
𝑎𝑖 , 𝑗 in a

polynomial can be ordered so that the product with another monomial is
ordered, i. e. if 𝛼 ⩽ 𝛽 and both 𝛼×𝛾 and 𝛽×𝛾 are non-zero, then 𝛼×𝛾 ⩽ 𝛽×
𝛾. This order is leveraged to obtain efficient algorithms, similar to what is
done using Gröbner bases for computation of standard polynomials [117]. [117]: Hoeven et al. (2019), Fast Gröbner

basis computation and polynomial reduction
for generic bivariate ideals

For instance, the algorithm for multiplication of polynomials uses this
property to compute the product of an ordered polynomial 𝑃 with∑𝑛
𝑖=1 𝛼𝑖

∏𝑘𝑖
𝑗=1 𝛿

𝑏𝑖 , 𝑗
𝑎𝑖 , 𝑗 :

1. compute the products 𝑃𝑖 = 𝑃 × 𝛼𝑖
∏𝑘𝑖

𝑗=1 𝛿
𝑏𝑖 , 𝑗
𝑎𝑖 , 𝑗 for all 𝑖;

2. compare and order a list 𝐿 of all the first elements of those polyno-
mials;

3. append the smallest element to the result and remove it from the
corresponding 𝑃𝑖 ;

4. insert the (new) first element of 𝑃𝑖 to the list 𝐿 if it exists;
5. if 𝐿 is non-empty, go back to step 3.

When adding or multiplying polynomials, which consist of monomials,
we check if a monomial is contained or included by another, and exclude
all redundant cases (c.f. contains or includes). This is also done when
inserting monomials. Thus we keep polynomials free of implementation
choices that we would otherwise have to handle during evaluation.

Deciding faster the existence of a bound: delta graphs

Adopting the
∏𝑝

𝑖=1 𝐴𝑖 → mwp∞ semi-ring permits to complete all deriva-
tions simultaneously, but remains to determine if there exists an assign-
ment ®𝑎 ∈∏𝑝

𝑖=1 𝐴𝑖 s.t. the resulting matrix is∞-free, to decide whenever a
program accepts a polynomial bound: this is the evaluation step. Despite
the optimizations detailed above that simplifies the task, this phase
remains particularly costly, since the number of assignment grows ex-
ponentially w.r.t. the number of choice, which is linear in the number
of variables. While this step is necessary (in one form or another) if one
wishes to produce the actual mwp matrices certifying polynomial bounds,
we implemented a specific data structure to keep track of assignments
resulting in∞ coefficients on the fly, thus allowing the analysis to provide
a qualitative answer quickly. This section details how those delta graphs
allow to immediately determines whenever a polynomial bound exists
without having to compute the corresponding matrix, something that
was not possible in the original, non-deterministic, calculus.

A delta graph is a graph whose vertices are monomials. The graph is
populated during the analysis by adding those monomials that appear
with an infinite coefficient – i. e. possible choices leading to ∞ in the
resulting matrix. This graph is structured in layers: each layer corresponds
to the size of the monomials (the number of deltas) it contains. The

https://github.com/statycc/pymwp/blob/746da71a5490c5f21ebc5643ea20822f78876959/pymwp/polynomial.py#L199
https://github.com/statycc/pymwp/blob/b2974a26cf42c262d84662e32869b0e2c3950216/pymwp/monomial.py#L79
https://github.com/statycc/pymwp/blob/b2974a26cf42c262d84662e32869b0e2c3950216/pymwp/monomial.py#L95
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intuition is that a monomial – or rather a list of deltas 𝛿_
_ – defines

a subset of the space
∏𝑝

𝑖=1 𝐴𝑖 ; the less deltas in the monomial, the
greater the subspace represented13. As we populate the delta graph, we 13: Our intuitions here come from the

standard topological structure of spaces
of infinite sequences, where such a mono-
mial represents a ‘cylinder set’, i. e. an
element of the standard basis for open
sets.

create edges within a given layer to keep track of differences between
monomials: we add an edge labeled 𝑖 between two monomials if and
only if they differ only on one delta 𝛿𝑖_ (i. e. one is obtained from the other
by replacing the first index of 𝛿𝑖_). This is used to implement a fusion
method on delta graphs, which simplifies the structure: as soon as a
monomial 𝑚 in layer 𝑛 has Card(𝐴𝑖) − 1 outgoing edges labelled 𝑖, we
can remove all these monomials and insert a shorter monomial in layer
𝑛 − 1, obtained from 𝑚 by simply removing 𝛿𝑖_. This implements the fact
that

∑Card(𝐴𝑖 )−1
𝑘=0 𝑚𝛿

𝑗

𝑘
= 𝑚.

Now, remember the delta graph represents the subspace of assignments
for which an∞ appears. If at some point the delta graph is completely
simplified (i. e. ‘fusions’ to the graph with a unique monomial consisting
in an empty list of 𝛿_

_), it means the whole space of assignments is
represented and no mwp-bounds can be found. On the contrary, if the
analysis ends with a delta graph different from the completely simplified
one, at least one assignment exists for which no infinite coefficients
appear, and therefore at least one mwp-bound exists. This allows one to
answer the question ‘Is there at least one mwp-bound?’ without actually
computing said bounds. Based on the information collected in the delta
graph and the matrix with polynomial coefficients, one can however
recover all possible matrix assignments by going through all possible
valuations.

This last part is implemented with a specific iterator that leverages the
information collected in the delta graph to skip large sets of valuations
in a single step. For instance, suppose the monomial 𝛿1

1 lies in the delta
graph – i. e. that an infinite coefficient will be reached if the second index
is equal to 1. When asked the valuation after (0, 0, 2, 2) (and supposing
that Card(𝐴𝑖) = 3 for all 𝑖), our delta_iterator will jump directly to
(0, 2, 0, 0), skipping all intermediate valuation of the form (0, 1, 𝑎, 𝑏) in
a single step. Similarly, it will jump from (1, 0, 2, 2) to (1, 2, 0, 0), again
skipping several valuations at a time, providing a faster analysis. Note
that the implementation required care, to correctly jump when given
additional informations from the delta graph, e.g. to produce (2, 0, 1, 0) as
the successor of (0, 0, 2, 2) if 𝛿0

0, 𝛿1
1 and 𝛿2

0 all belong to the delta graph.

Implementing, testing and comparing the analysis

Demonstrating the implementability of the improved and extended
mwp-bounds analysis requires an implementation. Our open-source
solution, packaged through Python Package Index (PyPI) as pymwp, is
a standalone command line tool, written in Python, that automatically
performs growth-rate analysis on programs written in a subset of the C
programming language. For programs that pass the analysis, it produces
a matrix corresponding to the input program and a list of valid derivation
choices; and for programs that do not have polynomial bounds, it reports
infinity. Our motivation for choosing C as the language of analysis resulted
from its central role and similarity with the original while language.
Pythonwas an ideal choice for the implementation because of its plasticity,
collection of libraries, and because it allowed partial reuse of a previous
flow analysis tool [53]. The source code is available on Github, along [53]: Moyen et al. (2017), Loop Quasi-

Invariant Chunk Detectionwith an online demo, and detailed documentationdescribing its current

https://github.com/statycc/pymwp/blob/946a5b44692325095392694950ed03807f059b52/pymwp/delta_graphs.py#L274
https://github.com/statycc/pymwp/blob/a39fe9a8cefa4be5a93380d66d1cb8162bb0ed01/pymwp/delta_iter.py
https://github.com/statycc/pymwp/blob/a39fe9a8cefa4be5a93380d66d1cb8162bb0ed01/pymwp/delta_iter.py#L36
https://pypi.org/project/pymwp/
https://pypi.org/project/pymwp/
https://statycc.github.io/pymwp/features/
https://github.com/statycc/pymwp/
https://statycc.github.io/pymwp/demo/
https://statycc.github.io/pymwp/
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supported features and functionality. We now discuss how we tested and
assessed it, and how it compares (or, rather does not compare) to other
similar approaches.

Experimental evaluation. We allocated extensive focus and effort on
testing and profiling our implementation, to ensure the correctness and
efficiency of the analysis, and with the terminal objective of obtaining a
usable tool. The test suite includes 42 C programs, carefully designed to
exercise different aspects of the analysis, ranging from basic derivations,
to ones producing worst-case behavior (by yielding e.g. dense matrices
or exponential number of derivations), and classical examples such as
computing the greatest common divisor or exponentiation.

We refer to our benchmarks for measured analysis results for each
program. The most salient aspect is that our analysis is extremely fast (the
time is measured in milliseconds) despite important numbers of function
calls (in the 10k range, excluding builtin Python language calls, for 10-
lines programs). Even examples tailored to stress our implementation
cannot make the analysis go over 4 seconds. We cannot compare our
implementation with implementations of the original analysis, since it
has never been implemented, and (according to our attempts) cannot be
implemented in any realistic manner.

A more complete presentation of the implementation can be accessed in
the recent tool paper [55]. [55]: Aubert et al. (2023), pymwp: A Static

Analyzer Determining Polynomial Growth
Bounds

https://github.com/statycc/pymwp/tree/e59aeca6f690c5768adad360523525fb63a908ea/tests
https://github.com/statycc/pymwp/actions/workflows/profile.yaml
https://github.com/statycc/pymwp/tree/main/c_files
https://github.com/statycc/pymwp/tree/8cf20f6157a8dfc3ce1593b766c31b1d49af4f77/c_files/basics
https://statycc.github.io/pymwp/demo/#other_dense.c
https://statycc.github.io/pymwp/demo/#other_explosion.c
https://statycc.github.io/pymwp/demo/#other_gcd.c
https://statycc.github.io/pymwp/demo/#infinite_exponent_1.c
https://github.com/statycc/pymwp/releases/tag/profile-latest


Unifying algebraic lower bounds 8.
8.1. Algebraic models of computation

We start by showing how algebraic models of computation can be defined
as abstract programs for a well-chosen amc.

The general arithmetic amc.

We now define the actions 𝛼full and 𝛼Rfull. Those will capture all arithmetic
and algebraic models of computation considered in this chapter, and the
main lemma (Lemma 8.2.11) will be stated for this monoid action. All
lower bounds results recovered from the literature, as well as the new
lower bounds obtained in this work, will be obtained as corollaries of
this technical lemma.

As we intend to consider prams at some point, we consider from the
beginning the memory of our machines to be separated in two infinite
blocks Z𝜔, intended to represent sets of both shared and private memory
cells1. 1: Obviously, this could be done without

any explicit separation of the underlying
space, but this will ease the constructions
of the next section.Definition 8.1.1 The underlying space of 𝛼full is X = ZZ � Z𝜔 × Z𝜔. The set

of generators is defined by their action on the underlying space, writing 𝑘//𝑛
the floor ⌊𝑘/𝑛⌋ of 𝑘/𝑛 with the conventions that 𝑘//𝑛 = 0 when 𝑛 = 0 and
𝑛
√
𝑘 = 0 when 𝑘 ⩽ 0:

▶ const𝑖(𝑐) initialises the register 𝑖 with the constant 𝑐 ∈ Z:

𝛼full(const𝑖(𝑐))(®𝑥) = (®𝑥{𝑥𝑖 := 𝑐});

▶ ★𝑖(𝑗 , 𝑘) (★ ∈ {+,−,×, //}) performs the algebraic operation ★ on the
values in registers 𝑗 and 𝑘 and store the result in register 𝑖:

𝛼full(★𝑖(𝑗 , 𝑘))(®𝑥) = (®𝑥{𝑥𝑖 := 𝑥 𝑗 ★ 𝑥𝑘});

▶ ★𝑐
𝑖
(𝑗) (★ ∈ {+,−,×, //}) performs the algebraic operation ★ on the value

in register 𝑗 and the constant 𝑐 ∈ Z and store the result in register 𝑖:

𝛼full(★𝑐𝑖 (𝑗))(®𝑥) = (®𝑥{𝑥𝑖 := 𝑐 ★ 𝑥 𝑗});

▶ copy(𝑖 , 𝑗) copies the value stored in register 𝑗 in register 𝑖:

𝛼full(copy(𝑖 , 𝑗))(®𝑥) = (®𝑥{𝑥𝑖 := 𝑥 𝑗});

▶ copy(♯𝑖 , 𝑗) copies the value stored in register 𝑗 in the register whose index
is the value stored in register 𝑖:

𝛼full(copy(♯𝑖 , 𝑗))(®𝑥) = (®𝑥{𝑥𝑥𝑖 := 𝑥 𝑗});

▶ copy(𝑖 , ♯ 𝑗) copies the value stored in the register whose index is the value
stored in register 𝑗 in register 𝑖:

𝛼full(copy(𝑖 , ♯ 𝑗))(®𝑥) = (®𝑥{𝑥𝑖 := 𝑥𝑥 𝑗});
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▶ 𝑛
√
𝑖(𝑗) computes the floor of the 𝑛-th root of the value stored in register 𝑗

and store the result in register 𝑖:

𝛼full( 𝑛
√
𝑖(𝑗))(®𝑥) = (®𝑥{𝑥𝑖 := 𝑛

√
𝑥 𝑗}).

The general algebraic amc.

We also define the real-valued equivalent, which will be essential for
the proof of lower bounds. The corresponding amc 𝛼Rram is defined in
the same way than the integer-valued one, but with underlying space
X = RZ and with instructions adapted accordingly:

▶ the division and 𝑛-th root operations are the usual operations on
the reals;

▶ the three copy operators are only effective on integers.

Note that we consider the space RR, i.e. an uncountable number of
potential registers. This appears to us as the simplest way to represent
the model of real-valued prams which includes indirect addressing. In
practise, only a finite number of registers can be accessed during a finite
execution (since indexes need to be computed), and therefore a countable
number of potential registers would be enough. However this raises the
issue of defining the semantics properly: using maps from R to N do
not work because this creates side-effects giving more expressive power
to the machines (e.g. considering that indirect addressing copy(♯𝑖 , 𝑗)
modifies the register of index ⌊𝑖⌋ – where ⌊·⌋ is the floor function – turns
out to provide a way to define euclidean division!). On the other hand,
defining a dynamic allocation of register should be possible but would
complicate the definitions.

Definition 8.1.2 The underlying space of 𝛼Rfull is X = RR � RR × RR. The
set of generators is defined by their action on the underlying space, with the
conventions that 𝑘/𝑛 = 0 when 𝑛 = 0 and 𝑛

√
𝑘 = 0 when 𝑘 ⩽ 0:

▶ const𝑖(𝑐) initialises the register 𝑖 with the constant 𝑐 ∈ R:

𝛼Rfull(const𝑖(𝑐))(®𝑥) = (®𝑥{𝑥𝑖 := 𝑐});

▶ ★𝑖(𝑗 , 𝑘) (★ ∈ {+,−,×, /}) performs the algebraic operation ★ on the
values in registers 𝑗 and 𝑘 and store the result in register 𝑖:

𝛼Rfull(★𝑖(𝑗 , 𝑘))(®𝑥) = (®𝑥{𝑥𝑖 := 𝑥 𝑗 ★ 𝑥𝑘});

▶ ★𝑐
𝑖
(𝑗) (★ ∈ {+,−,×, /}) performs the algebraic operation ★ on the value

in register 𝑗 and the constant 𝑐 ∈ R and store the result in register 𝑖:

𝛼Rfull(★𝑐𝑖 (𝑗))(®𝑥) = (®𝑥{𝑥𝑖 := 𝑐 ★ 𝑥 𝑗});

▶ copy(𝑖 , 𝑗) copies the value stored in register 𝑗 in register 𝑖:

𝛼Rfull(copy(𝑖 , 𝑗))(®𝑥) = (®𝑥{𝑥𝑖 := 𝑥 𝑗});

▶ copy(♯𝑖 , 𝑗) copies the value stored in register 𝑗 in the register whose index
is the value stored in register 𝑖:

𝛼Rfull(copy(♯𝑖 , 𝑗))(®𝑥) = (®𝑥{𝑥𝑥𝑖 := 𝑥 𝑗});
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▶ copy(𝑖 , ♯ 𝑗) copies the value stored in the register whose index is the value
stored in register 𝑗 in register 𝑖:

𝛼Rfull(copy(𝑖 , ♯ 𝑗))(®𝑥) = (®𝑥{𝑥𝑖 := 𝑥𝑥 𝑗});

▶ 𝑛
√
𝑖(𝑗) computes the 𝑛-th real root of the value stored in register 𝑗 and store

the result in register 𝑖:

𝛼Rfull( 𝑛
√
𝑖(𝑗))(®𝑥) = (®𝑥{𝑥𝑖 := 𝑛

√
𝑥 𝑗}).

Relation with standard models

We will now introduce the notion of quantitative soundness with respect
to a model of computation. This notion will be essential, as it connects
the time complexity of programs in the model considered (e.g. prams,
algebraic computation trees) with the length of the orbits of the𝛼-program
interpreting it.

Quantitative soundness is expressed with respect to a translation of
machines as graphings, together with a translation of inputs as points of
the configuration space. In the following section, these operations are
defined for each model of computation considered in this paper. In all
these cases, the representation of inputs is straightforward.

Definition 8.1.3 Let amc 𝛼 : 𝕄(𝐼)↷ X be an abstract model of computation,
and M a model of computation. A translation of M w.r.t. 𝛼 is a pair of maps
|[·]| which associate to each program 𝑀 in 𝕄 computing a decision problem a
computational 𝛼-graphing |[𝑀]| and to each input 𝜄 a point |[𝜄]| in X identified
as a point in X × {initial(𝑀)}.

Remark 8.1.1 We use here the definition from the original article [46]. This [46]: Seiller et al. (2022), Unifying lower
bounds for algebraic machines, semanticallydiffers from how one could express it using the framework established

in Part 1. In particular, we consider here that a graphing computing
a decision problem has two final states, an accepting one (⊤) and a
rejecting one (⊥). Based on previous chapter, one could instead consider
an abstract program (hence with one terminal state) which could output
either a 0 or a 1 (hence computing an interpretation of booleans). The
next definition would then amount to express that the length of the orbit
of |[𝑀]| from |[𝑥]| to the terminal state is equal, up to multiplication by a
constant (not depending on 𝑥), to the running time of 𝑀 on input 𝑥.

Definition 8.1.4 Let amc 𝛼 be an abstract model of computation, 𝕄 a model of
computation. The amc 𝛼 is quantitatively sound for 𝕄 w.r.t. a translation |[·]|
if for all machine 𝑀 computing a decision problem and input 𝜄, 𝑀 accepts 𝜄
(resp. rejects 𝜄) in 𝑘 steps if and only if |[𝑀]|𝑘(|[𝜄]|) = ⊤ (resp. |[𝑀]|𝑘(|[𝜄]|) = ⊥).

Algebraic computation trees. The first model considered here will be
that of algebraic computation tree as defined by Ben-Or [118]. Let us note [118]: Ben-Or (1983), Lower Bounds for Al-

gebraic Computation Treesthis model refines the algebraic decision trees model of Steele and Yao
[119], a model of computation consisting in binary trees for which each [119]: Steele et al. (1982), Lower bounds for

algebraic decision treesbranching performs a test w.r.t. a polynomial and each leaf is labelled
YES or NO. Algebraic computation trees only allow tests w.r.t. 0, while
additional vertices corresponding to algebraic operations can be used to
construct polynomials.
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Definition 8.1.5 An algebraic computation tree [118] on R𝑛 is a binary tree [118]: Ben-Or (1983), Lower Bounds for Al-
gebraic Computation Trees𝑇 with an function assigning:

▶ to any vertex 𝑣 with only one child (simple vertex) an operational in-
struction of the form 𝑓𝑣 = 𝑓𝑣𝑖 ★ 𝑓𝑣 𝑗 , 𝑓𝑣 = 𝑐 ★ 𝑓𝑣𝑖 , or 𝑓𝑣 =

√
𝑓𝑣𝑖 , where

★ ∈ {+,−,×, /}, 𝑣𝑖 , 𝑣 𝑗 are ancestors of 𝑣 and 𝑐 ∈ R is a constant;
▶ to any vertex 𝑣 with two children a test instruction of the form 𝑓𝑣𝑖 ★ 0,

where ★ ∈ {>,=,⩾}, and 𝑣𝑖 is an ancestor of 𝑣 or 𝑓𝑣𝑖 ∈ {𝑥1 , . . . , 𝑥𝑛};
▶ to any leaf an output YES or NO.

For any algebraic computation tree 𝑇, one can define an 𝛼Rfull program
simulating it. As algebraic computation trees are trees, they are in fact
represented by treeings, or loop-free programs (Definition 4.2.3), i.e. 𝛼Rfull-
programs whose set of control states can be ordered so that any edge in
the graphing is strictly increasing on its control states component.

Theorem 8.1.1 The representation of acts as 𝛼Rfull-programs is quantitatively
sound.

Algebraic circuits. In order to recover Cucker’s proof that NCR ≠

PtimeR, we need to introduce the model of algebraic circuits which can be
represented as 𝛼Rfull-programs.

Definition 8.1.6 An algebraic circuit over the reals with inputs in R𝑛 is a finite
directed graph whose vertices have labels in N ×N, that satisfies the following
conditions:

▶ There are exactly 𝑛 vertices 𝑣0,1 , 𝑣0,2 , . . . , 𝑣0,𝑛 with first index 0, and
they have no incoming edges;

▶ all the other vertices 𝑣𝑖 , 𝑗 are of one of the following types:
1. arithmetic vertex: they have an associated arithmetic operation
{+,−,×, /} and there exist natural numbers 𝑙 , 𝑘, 𝑟 , 𝑚 with 𝑙 , 𝑘 < 𝑖
such that their two incoming edges are of sources 𝑣𝑙 ,𝑟 and 𝑣𝑘,𝑚 ;

2. constant vertex: they have an associated real number 𝑦 and no
incoming edges;

3. sign vertex: they have a unique incoming edge of source 𝑣𝑘,𝑚 with
𝑘 < 𝑖.

We call depth of the circuit the largest 𝑚 such that there exist a vertex 𝑣𝑚,𝑟 , and
size of the circuit the total number of vertices. A circuit of depth 𝑑 is decisional
if there is only one vertex 𝑣𝑑,𝑟 at level 𝑑, and it is a sign vertex; we call 𝑣𝑑,𝑟 the
end vertex of the decisional circuit.

One can define for each algebraic circuit 𝐶 an 𝛼Rfull-program such that
each step of computation in 𝐶 is translated as going through a single
edge in the corresponding 𝛼Rfull-program. The following result then
follows.

Theorem 8.1.2 The representation of algcirc as 𝛼Rfull-programs is quantita-
tively sound.

Arithmetic rams We want to consider arithmetic parallel random
access machines, that act not on strings of bits, but on integers. In order to
define those properly, we first define the notion of (sequential) arithmetic
random access machine (ram) before considering their parallelisation.
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An arithmetic ram command is a pair (ℓ , 𝐼) of a line ℓ ∈ N★ and an
instruction I among the following, where 𝑖 , 𝑗 ∈ N, ★ ∈ {+,−,×, /}, 𝑐 ∈ Z
is a constant and ℓ , ℓ ′ ∈ N★ are lines:

skip; Xi B c; Xi B Xj ★ Xk; Xi B Xj;
Xi B ♯Xj; ♯Xi B Xj; if Xi = 0 goto ℓ else ℓ

′.

An arithmetic ram machine 𝑀 is then a finite set of commands such that
the set of lines is {1, 2, . . . , len(𝑀)}, with len(𝑀) the length of 𝑀. We
will denote the commands in 𝑀 by (𝑖 , Inst𝑀(𝑖)), i.e. Inst𝑀(𝑖) denotes the
line 𝑖 instruction.

Machines in the arithmetic ram model can be represented as graphings
w.r.t. the action 𝛼full. Intuitively the encoding works as follows. The notion
of control state allows to represent the notion of line in the program. Then,
the action just defined allows for the representation of all commands but
the conditionals. The conditionals are represented as follows: depending
on the value of 𝑋𝑖 one wants to jumps either to the line ℓ or to the line
ℓ ′; this is easily modelled by two different edges of respective sources
ℍ(𝑖) = {®𝑥 | 𝑥𝑖 = 0} and ℍ(𝑖)c = {®𝑥 | 𝑥𝑖 ≠ 0}. This interpretation is
quantitatively sound.

Theorem 8.1.3 The representation of arithmetic rams as 𝛼full-programs is
quantitatively sound w.r.t. the translation just defined.

The Crew operation

Based on the notion of arithmetic ram, we will now consider their
parallelisation, namely arithmetic prams. An arithmetic pram 𝑀 is given
as a finite sequence of arithmetic ram machines 𝑀1 , . . . , 𝑀𝑝 , where 𝑝 is
the number of processors of 𝑀. Each processor 𝑀𝑖 has access to its own,
private, set of registers (X𝑖

𝑘
)𝑘⩾0 and a shared memory represented as a set

of registers (X0
𝑘
)𝑘⩾0.

One has to deal with conflicts when several processors try to access
the shared memory simultaneously. We here chose to work with the
Concurrent Read, Exclusive Write (crew) discipline: at a given step at which
several processors try to write in the shared memory, only the processor
with the smallest index will be allowed to do so. In order to model such
parallel computations, we abstract the crew at the level of monoids. For
this, we suppose that we have two monoid actions M⟨𝐺,R⟩ ↷ X × Y
and M⟨𝐻,Q⟩↷ X×Z, where X represents the shared memory. We then
consider the subset # ⊂ 𝐺 × 𝐻 of pairs of generators that potentially
conflict with one another – the conflict relation.

Definition 8.1.7 (Conflicted sum) Let M⟨𝐺,R⟩, M⟨𝐺′,R′⟩ be two monoids
and # ⊆ 𝐺 × 𝐺′. The conflicted sum of M⟨𝐺,R⟩ and M⟨𝐺′,R′⟩ over
#, noted M⟨𝐺,R⟩ ∗# M⟨𝐺′,R′⟩, is defined as the monoid with generators
({1} × 𝐺) ∪ ({2} × 𝐺′) and relations

({1} × 𝑅) ∪ ({2} × 𝑅′) ∪ {(1, 𝑒)} ∪ {(1, 𝑒′)}
∪{

(
(1, 𝑔)(2, 𝑔′), (2, 𝑔′)(1, 𝑔)

)
| (𝑔, 𝑔′) ∉ #}

where 1, 𝑒, 𝑒′ are the units of M⟨𝐺,R⟩ ∗# M⟨𝐺′,R′⟩, M⟨𝐺,R⟩ and M⟨𝐺′,R′⟩
respectively.

In the particular case where # = (𝐺 ×𝐻′) ∪ (𝐻 × 𝐺′), with 𝐻, 𝐻′ respectively
subsets of 𝐺 and 𝐺′, we will write the sum M⟨𝐺,R⟩ ∗

𝐻 𝐻′ M⟨𝐺′,R′⟩.
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Remark 8.1.2 When the conflict relation # is empty, this defines the
usual direct product of monoids. This corresponds to the case in which
no conflicts can arise w.r.t. the shared memory. In other words, the
direct product of monoids corresponds to the parallelisation of processes
without shared memory.

Dually, when the conflict relation is full (# = 𝐺×𝐺′), this defines the free
product of the monoids.

Definition 8.1.8 Let 𝛼 : 𝑀 ↷ X × Y be a monoid action. We say that an
element 𝑚 ∈ 𝑀 is central relatively to 𝛼 (or just central) if 𝑚 acts as the
identity on X, i.e.2 𝛼(𝑚);𝜋𝑋 = 𝜋𝑋 . 2: Here and in the following, we denote

by ; the sequential composition of func-
tions. I.e. 𝑓 ; 𝑔 denotes what is usually
written 𝑔 ◦ 𝑓 .

Intuitively, central elements are those that will not affect the shared
memory. As such, only non-central elements require care when putting
processes in parallel.

Definition 8.1.9 Let M⟨𝐺,R⟩ ↷ X × Y be an amc. We note 𝑍𝛼 the set of
central elements and 𝑍̄𝛼(𝐺) = {𝑚 ∈ 𝐺 | 𝑚 ∉ 𝑍𝛼}.

Definition 8.1.10 (The crew of amcs) Let 𝛼 : M⟨𝐺,R⟩ ↷ X × Y and 𝛽 :
M⟨𝐻,Q⟩↷ X×Z be amcs. We define the amc crew(𝛼, 𝛽) : M⟨𝐺,R⟩ ∗

𝑍̄𝛼(𝐺) 𝑍̄𝛽(𝐺′)
M⟨𝐺′,R′⟩ ↷ X × Y × Z by letting crew(𝛼, 𝛽)(𝑚, 𝑚′) = 𝛼(𝑚) ∗ 𝛽(𝑚′) on
elements of 𝐺 × 𝐺′, where3: 3: We denote 𝜎𝑋,𝑌 : Y × X→ X × Y the

map defined as (𝑦, 𝑥) ↦→ (𝑥, 𝑦).
𝛼(𝑚) ∗ 𝛽(𝑚′) ={

Δ1; [𝛼(𝑚);𝜋𝑌 , 𝛽(𝑚′)]; [𝜎𝑋,𝑌 , Id𝑍] if 𝑚 ∉ 𝑍̄𝛼(𝐺), 𝑚′ ∈ 𝑍̄𝛽(𝐺′),
Δ2; [𝛼(𝑚), 𝛽(𝑚′);𝜋𝑍] otherwise,

with Δ𝑖 : X × Y × Z→ X × Y × X × Z defined4 as: 4: Formally, the definition of Δ𝑖 is
parametrised by the choice of a point
𝑥0 ∈ X, but the map 𝛼(𝑚) ∗ 𝛽(𝑚′) does
not depend on this choice because of the
projections on Y and Z.

Δ1 :(𝑥, 𝑦, 𝑧) ↦→ (𝑥0 , 𝑦, 𝑥, 𝑧)
Δ2 :(𝑥, 𝑦, 𝑧) ↦→ (𝑥, 𝑦, 𝑥0 , 𝑧).

Parallel models

We can now define amc of arithmetic prams and thus the interpretations
of arithmetic prams as abstract programs. For each integer 𝑝, we define
the amc crew𝑝(𝛼full). This allows the consideration of up to 𝑝 parallel
arithmetic rams: the translation of such a ram with 𝑝 processors is defined
by extending the translation of rams by considering a set of states equal
to 𝐿1 × 𝐿2 × · · · × 𝐿𝑝 where for all 𝑖 the set 𝐿𝑖 is the set of lines of the 𝑖-th
processor.

Now, to deal with arbitrary large arithmetic prams, i.e. with arbitrarily
large number of processors, one considers the following amc defined as
a direct limit.

Definition 8.1.11 (The amc of arithmetic prams) Let 𝛼 : 𝑀 ↷ X × X be the
amc 𝛼full. The amc of arithmetic prams is defined as 𝛼pram = lim−−→ crew𝑘(𝛼),
where crew𝑘−1(𝛼) is identified with a restriction of crew𝑘(𝛼) through the map
crew𝑘−1(𝛼)(𝑚1 , . . . , 𝑚𝑘−1) ↦→ crew𝑘(𝛼)(𝑚1 , . . . , 𝑚𝑘−1 , 1).

Remark that the underlying space of the pram amc 𝛼pram is defined
as the union ∪𝑛∈𝜔Z𝜔 × (Z𝜔)𝑛 which we will write Z𝜔 × (Z𝜔)(𝜔). In
practise a given 𝛼pram-program admitting a finite 𝛼pram representative
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will only use elements in crew𝑝(𝛼full), and can therefore be understood
as a crew𝑝(𝛼)-program.

Theorem 8.1.4 The representation of arithmetic prams as 𝛼pram-programs is
quantitatively sound.

Algebraic prams. These definitions and results stated for integer-valued
prams can be adapted to define algebraic prams and their translation as
𝛼Rfull-programs.

An algebraic ram command is a pair (ℓ , 𝐼) of a line ℓ ∈ N★ and an
instruction I among the following, where 𝑖 , 𝑗 ∈ N, ★ ∈ {+,−,×, /}, 𝑐 ∈ Z
is a constant and ℓ , ℓ ′ ∈ N★ are lines:

skip; Xi B c; Xi B Xj ★ Xk; Xi B Xj;
Xi B ♯Xj; ♯Xi B Xj; if Xi = 0 goto ℓ else ℓ

′.

We consider a restriction for pointers similar to that considered in the case
of integer-valued rams. An algebraic ram machine 𝑀 is then a finite set of
commands such that the set of lines is {1, 2, . . . , len(𝑀)}, with len(𝑀)
the length of 𝑀. We will denote the commands in 𝑀 by (𝑖 , Inst𝑀(𝑖)), i.e.
Inst𝑀(𝑖) denotes the line 𝑖 instruction.

An algebraic pram 𝑀 is given as a finite sequence of algebraic ram
machines 𝑀1 , . . . , 𝑀𝑝 , where 𝑝 is the number of processors of 𝑀. Each
processor 𝑀𝑖 has access to its own, private, set of registers (X𝑖

𝑘
)𝑘⩾0 and a

shared memory represented as a set of registers (X0
𝑘
)𝑘⩾0. Again, we chose

to work with the Concurrent Read, Exclusive Write (crew) discipline as it is
well translated through the crew operation of amcs.

Definition 8.1.12 (The amc of algebraic prams) Let 𝛼 : 𝑀 ↷ X × X be the
amc 𝛼Rfull. The amc of algebraic prams is defined as

𝛼Rpram = lim−−→ crew𝑘(𝛼),

where crew𝑘−1(𝛼) is identified with a restriction of crew𝑘(𝛼) through

crew𝑘−1(𝛼)(𝑚1 , . . . , 𝑚𝑘−1) ↦→ crew𝑘(𝛼)(𝑚1 , . . . , 𝑚𝑘−1 , 1).

Then the following results are quite straightforward.

Theorem 8.1.5 The representation of algebraic rams as 𝛼Rfull-programs is
quantitatively sound. The representation of algebraic prams as 𝛼Rpram-programs
is quantitatively sound.

8.2. Entropy and Cells

Topological Entropy

Topological Entropy was introduced in the context of dynamical systems
in an attempt to classify the latter w.r.t. conjugacy. The topological entropy
of a dynamical system is a value representing the average exponential
growth rate of the number of orbit segments distinguishable with a finite
(but arbitrarily fine) precision. The definition is based on the notion of
open covers.
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Open covers. Given a topological space X, an open cover of X is a family
U = (𝑈𝑖)𝑖∈𝐼 of open subsets of X such that ∪𝑖∈𝐼𝑈𝑖 = X. A finite cover U
is a cover whose indexing set is finite. A subcover of a cover U = (𝑈𝑖)𝑖∈𝐼
is a sub-family S = (𝑈 𝑗)𝑗∈𝐽 for 𝐽 ⊆ 𝐼 such that S is a cover, i.e. such that
∪𝑗∈𝐽𝑈 𝑗 = X.

We will denote by Cov(X) (resp. FCov(X)) the set of all open covers (resp.
all finite open covers) of the space X.

We now define two operations on open covers that are essential to
the definition of entropy. An open cover U = (𝑈𝑖)𝑖∈𝐼 , together with a
continuous function 𝑓 : X → X, defines the inverse image open cover
𝑓 −1(U) = ( 𝑓 −1(𝑈𝑖))𝑖∈𝐼 . Note that if U is finite, 𝑓 −1(U) is finite as well.
Given two open covers U = (𝑈𝑖)𝑖∈𝐼 and V = (𝑉𝑗)𝑗∈𝐽 , we define their join
U ∨ V as the family (𝑈𝑖 ∩𝑉𝑗)(𝑖 , 𝑗)∈𝐼×𝐽 . Once again, if both initial covers are
finite, their join is finite.

Entropy. Usually, entropy is defined for continuous maps on a compact
set, following the original definition by Adler, Konheim and McAndrews
[120]. Using the fact that arbitrary open covers have a finite subcover, [120]: Adler et al. (1965), Topological En-

tropythis allows one to ensure that the smallest subcover of any cover is
finite. I.e. given an arbitrary cover U , one can consider the smallest – in
terms of cardinality – subcover S and associate to U the finite quantity
log2(Card(S)). This quantity, obviously, need not be finite in the general
case of an arbitrary cover on a non-compact set.

However, a generalisation of entropy to non-compact sets can easily be
defined by restricting the usual definition to finite covers5. This is the 5: This is discussed by Hofer [121] to-

gether with another generalisation based
on the Stone-Čech compactification of
the underlying space.

definition we will use here.

Definition 8.2.1 Let X be a topological space, and U = (𝑈𝑖)𝑖∈𝐼 be a finite cover
of X. We define the quantity 𝐻0

X(U) as

min{log2(Card(𝐽)) | 𝐽 ⊂ 𝐼 ,∪𝑗∈𝐽𝑈 𝑗 = X}.

In other words, if 𝑘 is the cardinality of the smallest subcover of U ,
𝐻0(U) = log2(𝑘).

Definition 8.2.2 Let X be a topological space and 𝑓 : X→ X be a continuous
map. For any finite open cover U of X, we define:

𝐻 𝑘
X( 𝑓 ,U) =

1
𝑘
𝐻0

X(U ∨ 𝑓 −1(U) ∨ · · · ∨ 𝑓 −(𝑘−1)(U)).

One can show that the limit lim𝑛→∞ 𝐻𝑛
X( 𝑓 ,U) exists and is finite; it will

be noted ℎ( 𝑓 ,U). The topological entropy of 𝑓 is then defined as the
supremum of these values, when U ranges over the set of all finite covers
FCov(X).

Definition 8.2.3 Let X be a topological space and 𝑓 : X→ X be a continuous
map. The topological entropy of 𝑓 is defined as ℎ( 𝑓 ) = supU∈FCov(X) ℎ( 𝑓 ,U).
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Graphings and Entropy

We now need to define the entropy of a deterministic graphing. As men-
tioned briefly already, deterministic graphings on a space X are in
one-to-one correspondence with partial dynamical systems on X. To
convince oneself of this, it suffices to notice that any partial dynamical
system can be represented as a graphing with a single edge, and that
if the graphing 𝐺 is deterministic its edges can be glued together to
define a partial continuous function [𝐺]. Thus, we only need to extend
the notion of entropy to partial maps, and we can then define the entropy
of a graphing 𝐺 as the entropy of its corresponding map [𝐺].
Given a finite cover U , the only issue with partial continuous maps is
that 𝑓 −1(U) is not in general a cover. Indeed, { 𝑓 −1(𝑈) |𝑈 ∈ U} is a family
of open sets by continuity of 𝑓 but the union ∪𝑈∈U 𝑓 −1(𝑈) is a strict
subspace of X (namely, the domain of 𝑓 ). It turns out the solution to this
problem is quite simple: we notice that 𝑓 −1(U) is a cover of 𝑓 −1(X) and
now work with covers of subspaces of X. Indeed, U ∨ 𝑓 −1(U) is itself a
cover of 𝑓 −1(X) and therefore the quantity 𝐻2

X( 𝑓 ,U) can be defined as
(1/2)𝐻0

𝑓 −1(X)(U ∨ 𝑓
−1(U)).

We now generalise this definition to arbitrary iterations of 𝑓 by extending
Definitions 8.2.2 and 8.2.3 to partial maps as follows.

Definition 8.2.4 Let X be a topological space and 𝑓 : X→ X be a continuous
partial map. For any finite open cover U of X, we define:

𝐻 𝑘
X( 𝑓 ,U) =

1
𝑘
𝐻0
𝑓 −𝑘+1(X)(U ∨ 𝑓

−1(U) ∨ · · · ∨ 𝑓 −(𝑘−1)(U)).

The entropy of 𝑓 is then defined as ℎ( 𝑓 ) = supU∈FCov(X) ℎ( 𝑓 ,U), where
ℎ( 𝑓 ,U) is again defined as the limit lim𝑛→∞ 𝐻𝑛

X( 𝑓 ,U).

Now, let us consider the special case of a graphing 𝐺 with set of control
states 𝑆𝐺. For an intuitive understanding, one can think of 𝐺 as the
representation of a pram machine. We focus on the specific open cover
indexed by the set of control states, i.e. S = (X × {𝑠}𝑠∈𝑆𝐺 ), and call it
the states cover. We will now show how the partial entropy 𝐻 𝑘(𝐺, S) is
related to the set of admissible sequence of states. Let us define those first.

Definition 8.2.5 Let 𝐺 be a graphing, with set of control states 𝑆𝐺. An
admissible sequence of states is a sequence s = 𝑠1𝑠2 . . . 𝑠𝑛 of elements of 𝑆𝐺
such that for all 𝑖 ∈ {1, 2, . . . , 𝑛 − 1} there exists a subset 𝐶𝑖 of X – i.e. a set of
configurations – such that 𝐺 contains an edge from 𝐶𝑖 × {𝑠𝑖} to a subspace of
𝐶𝑖+1 × {𝑠𝑖+1} (noting 𝐶𝑛 = X).

Example 8.2.1 As an example, let us consider the very simple graphing
with four control states 𝑎, 𝑏, 𝑐, 𝑑 and edges from X× {𝑎} to X× {𝑏}, from
X × {𝑏} to X × {𝑐}, from X × {𝑐} to X × {𝑏} and from X × {𝑐} to X × {𝑑}.
Then the sequences 𝑎𝑏𝑐𝑑 and 𝑎𝑏𝑐𝑏𝑐𝑏𝑐 are admissible, but the sequences
𝑎𝑏𝑎, 𝑎𝑏𝑐𝑑𝑑, and 𝑎𝑏𝑐𝑏𝑎 are not.

Lemma 8.2.1 Let 𝐺 be a graphing, and S its states cover. Then for all integer
𝑘, the set Adm𝑘(𝐺) of admissible sequences of states of length 𝑘 > 1 is of
cardinality 2𝑘.𝐻𝑘 (𝐺,S).
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Proof. We show that the set Adm𝑘(𝐺) of admissible sequences of states
of length 𝑘 has the same cardinality as the smallest subcover of S ∨
[𝐺]−1(S) ∨ · · · ∨ [𝐺]−(𝑘−1)(S)). Hence

𝐻 𝑘(𝐺, S) = 1
𝑘

log2(Card(Adm𝑘(𝐺))),

which implies the result.

The proof is done by induction. As a base case, let us consider the set of
Adm2(𝐺) of admissible sequences of states of length 2 and the open cover
V = S ∨ [𝐺]−1(S) of 𝐷 = [𝐺]−1(X). An element of V is an intersection
X × {𝑠1} ∩ [𝐺]−1(X × {𝑠2}), and it is therefore equal to 𝐶[𝑠1 , 𝑠2] × {𝑠1}
where 𝐶[𝑠1 , 𝑠2] ⊂ X is the set {𝑥 ∈ X | [𝐺](𝑥, 𝑠1) ∈ X × {𝑠2}}. This set is
empty if and only if the sequence 𝑠1𝑠2 belongs to Adm2(𝐺). Moreover,
given another sequence of states 𝑠′1𝑠

′
2 (not necessarily admissible), the

sets 𝐶[𝑠1 , 𝑠2] and 𝐶[𝑠1 , 𝑠2] are disjoint. Hence a set 𝐶[𝑠1 , 𝑠2] is removable
from the cover V if and only if the sequence 𝑠1𝑠2 is not admissible. This
implies the result for 𝑘 = 2.

The step for the induction is similar to the base case. It suffices to consider
the partition S𝑘 = S∨[𝐺]−1(S)∨· · ·∨[𝐺]−(𝑘−1)(S)) as S𝑘−1∨[𝐺]−(𝑘−1)(S).
By the same argument, one can show that elements of S𝑘−1∨[𝐺]−(𝑘−1)(S)
are of the form 𝐶[s = (𝑠0𝑠1 . . . 𝑠𝑘−1), 𝑠𝑘] × {𝑠1} where 𝐶[s, 𝑠𝑘] ⊂ X is
the set {𝑥 ∈ X | ∀𝑖 = 2, . . . , 𝑘, [𝐺]𝑖−1(𝑥, 𝑠1) ∈ X × {𝑠𝑖}}. Again, these
sets 𝐶[s, 𝑠𝑘] are pairwise disjoint and empty if and only if the sequence
𝑠0𝑠1 . . . 𝑠𝑘−1 , 𝑠𝑘 is not admissible. R

A tractable bound on the number of admissible sequences of states
can be obtained by noticing that the sequence 𝐻 𝑘(𝐺, S) is sub-additive,
i.e. 𝐻 𝑘+𝑘′(𝐺, S) ⩽ 𝐻 𝑘(𝐺, S) + 𝐻 𝑘′(𝐺, S). A consequence of this is that
𝐻 𝑘(𝐺, S) ⩽ 𝑘𝐻1(𝐺, S). Thus the number of admissible sequences of
states of length 𝑘 is bounded by 2𝑘2𝐻1(𝐺,S). We now study how the
cardinality of admissible sequences can be related to the entropy of 𝐺.

Lemma 8.2.2 For all 𝜖 > 0, there exists an integer 𝑁 such that for all 𝑘 ⩾ 𝑁 ,
𝐻 𝑘(𝐺,U) < ℎ([𝐺]) + 𝜖.

Proof. Let us fix some 𝜖 > 0. Notice that if we let 𝐻𝑘(𝐺,U) = 𝐻0(U ∨
[𝐺]−1(U) ∨ · · · ∨ [𝐺]−(𝑘−1)(U))), the sequence 𝐻𝑘(𝑈) satisfies 𝐻𝑘+𝑙(U) ⩽
𝐻𝑘(U)+𝐻𝑙(U). By Fekete’s lemma on subadditive sequences, this implies
that lim𝑘→∞ 𝐻𝑘/𝑘 exists and is equal to inf𝑘 𝐻𝑘/𝑘. Thus ℎ([𝐺],U) =
inf𝑘 𝐻𝑘/𝑘.
Now, the entropy ℎ([𝐺]) is defined as supU lim𝑘→∞ 𝐻𝑘(U)/𝑘. This then
rewrites as supU inf𝑘 𝐻𝑘(U)/𝑘. We can conclude that ℎ([𝐺]) ⩾ inf𝑘 𝐻𝑘(U)/𝑘
for all finite open cover U .

Since inf𝑘 𝐻𝑘(U)/𝑘 is the limit of the sequence𝐻𝑘/𝑘, there exists an integer
𝑁 such that for all 𝑘 ⩾ 𝑁 the following inequality holds: |𝐻𝑘(U)/𝑘 −
inf𝑘 𝐻𝑘(U)/𝑘| < 𝜖, which rewrites as 𝐻𝑘(U)/𝑘 − inf𝑘 𝐻𝑘(U)/𝑘 < 𝜖. From
this we deduce𝐻𝑘(U)/𝑘 < ℎ([𝐺])+ 𝜖, hence𝐻 𝑘(𝐺,U) < ℎ([𝐺])+ 𝜖 since
𝐻 𝑘(𝐺,U) = 𝐻𝑘(𝐺,U). R

Lemma 8.2.3 Let 𝐺 be a graphing, and let 𝑐 : 𝑘 ↦→ Card(Adm𝑘(𝐺)). Then
𝑐(𝑘) = 𝑂(2𝑘.ℎ([𝐺])) as 𝑘 goes to infinity.
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Lastly, we prove a result bounding the entropy of a map 𝛼(𝑚) ∗ 𝛽(𝑚′) in
the crew of amcs. The result is essentially a consequence of the product
rule (Theorem 3 in [122], or [123]) stating that the entropy of a product [122]: Adler et al. (1965), Topological En-

tropy
[123]: Goodwyn (1971), The Product Theo-
rem for Topological Entropy

ℎ( 𝑓 × 𝑔) is bounded above by the sum ℎ( 𝑓 ) + ℎ(𝑔).

Lemma 8.2.4 Let 𝛼 : M⟨𝐺,R⟩↷ X×Y and 𝛽 : M⟨𝐻,Q⟩↷ X×Z be amcs
such that every non-central element of 𝛽 acts as the identity on Z. Then for all
𝑚 ∈ M⟨𝐺,R⟩ and 𝑚′ ∈ M⟨𝐻,Q⟩, the entropy of 𝛼(𝑚) ∗ 𝛽(𝑚′) is bounded by
the sum of the entropies of 𝛼(𝑚) and 𝛽(𝑚′):

ℎ(𝛼(𝑚) ∗ 𝛽(𝑚′) ⩽ ℎ(𝛼(𝑚)) + ℎ(𝛽(𝑚′)).

Proof. We show that the entropy of 𝛼(𝑚) ∗ 𝛽(𝑚′) is bounded by the
entropy of 𝛼(𝑚) × 𝛽(𝑚). The result then follows by the product rule [123]. [123]: Goodwyn (1971), The Product Theo-

rem for Topological EntropyWe distinguish two cases: the first case is when one of 𝛼(𝑚) or 𝛽(𝑚′) is
central, i.e. 𝛼(𝑚);𝜋X = 𝜋X or 𝛽(𝑚′);𝜋X = 𝜋X, the second case is when
both 𝛼(𝑚) and 𝛽(𝑚′) act non-trivially on X.

For the first case, we may consider that 𝛽(𝑚′) is central without loss of
generality. It is then of the form 𝛽̃ × IdX with 𝛽̃ : Z → Z, and the key
observation is that

𝛼(𝑚) ∗ 𝛽(𝑚′) = 𝛼(𝑚) × 𝛽̃

in this case. We now apply the product rule on both identities. From the
first identity, we get

ℎ(𝛽(𝑚′)) = ℎ(𝛽̃) + ℎ(IdX = ℎ(𝛽̃),

since the entropy of the identity is equal to 0, and from the second identity,
we get

ℎ(𝛼(𝑚) ∗ 𝛽(𝑚′)) ≤ ℎ(𝛼(𝑚′)) + ℎ(𝛽̃).
Combining both we obtain that ℎ(𝛼(𝑚) ∗ 𝛽(𝑚′)) = ℎ(𝛼(𝑚)) + ℎ(𝛽(𝑚′)).
For the second case, the definition of 𝛼(𝑚) ∗ 𝛽(𝑚′) states that it is equal
to the following map:

Δ2; 𝛼(𝑚) × (𝛽(𝑚′);𝜋Z).

Diagrammatically, this is defined as:

X

Y

Z

X

Y

X

Z

X

Y

X

Z

X

Y

Z

𝛼(𝑚)

𝛽(𝑚′)

We will now bound the entropy of 𝛼(𝑚) ∗ 𝛽(𝑚′). This is where we
will use the hypothesis that 𝛽(𝑚′) acts as the identity on Z, i.e. that
𝛽(𝑚′)(𝑥, 𝑧) = (𝑥′, 𝑧). Indeed, from this hypothesis, one can deduce that

𝛼(𝑚) ∗ 𝛽(𝑚′)(𝑥, 𝑦, 𝑧) = 𝛼(𝑚)(𝑥, 𝑦) × IdZ(𝑧),

hence

ℎ(𝛼(𝑚) ∗ 𝛽(𝑚′)) = ℎ(𝛼(𝑚)) + ℎ(IdZ) = ℎ(𝛼(𝑚)) ≤ ℎ(𝛼(𝑚)) + ℎ(𝛽(𝑚′)),

since ℎ(IdZ) = 0 and ℎ(𝛽(𝑚′)) ≥ 0.

R
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Cells Decomposition

Now, let us consider a deterministic graphing 𝐺, with its state cover S .
We fix a length 𝑘 > 2 and reconsider the sets 𝐶[s] = 𝐶[(𝑠1𝑠2 . . . 𝑠𝑘−1 , 𝑠𝑘)]
(for a sequence of states s = 𝑠1𝑠2 . . . 𝑠𝑘) that appear in the proof of Lemma
8.2.1. The set (𝐶[s])s∈Adm𝑘 (𝐺) is a partition of the space [𝐺]−𝑘+1(X).
This decomposition splits the set of initial configurations into cells
satisfying the following property: for any two initial configurations contained
in the same cell 𝐶[s], the 𝑘-th first iterations of 𝐺 goes through the same
admissible sequence of states s.

Definition 8.2.6 Let 𝐺 be a deterministic graphing, with its state cover S .
Given an integer 𝑘, we define the 𝑘-th cell decomposition of X along 𝐺 as the
partition {𝐶[s] | s ∈ Adm𝑘(𝐺)}.

Then Lemma 8.2.1 provides a bound on the cardinality of the 𝑘-th cell
decomposition. Using the results in the previous section, we can then
obtain the following proposition.

Proposition 8.2.5 Let 𝐺 be a deterministic graphing, with entropy ℎ(𝐺). The
cardinality of the 𝑘-th cell decomposition of X w.r.t. 𝐺, as a function 𝑐(𝑘) of 𝑘,
is asymptotically bounded by 𝑔(𝑘) = 2𝑘.ℎ([𝐺]), i.e. 𝑐(𝑘) = 𝑂(𝑔(𝑘)).

We also state another bound on the number of cells of the 𝑘-th cell
decomposition, based on the state cover entropy, i.e. the entropy with
respect to the state cover rather than the usual entropy which takes the
supremum of cover entropies when the cover ranges over all finite covers
of the space. This result is a simple consequence of Lemma 8.2.1.

Proposition 8.2.6 Let 𝐺 be a deterministic graphing. We consider the state
cover entropy ℎ0([𝐺]) = lim𝑛→∞ 𝐻𝑛

X([𝐺], S) where S is the state cover. The
cardinality of the 𝑘-th cell decomposition of X w.r.t. 𝐺, as a function 𝑐(𝑘) of 𝑘,
is asymptotically bounded by 𝑔(𝑘) = 2𝑘.ℎ0([𝐺]), i.e. 𝑐(𝑘) = 𝑂(𝑔(𝑘)).

Entropic co-trees and 𝑘-th computational forests

The results from the last section providing bounds on the number of
cells in the k-th cell decomposition are in fact enough to recover most
of the lower bounds results that we reprove in this chapter. Indeed,
Steele and Yao result, Cucker’s result, and Mulmuley’s bounds on prams
without bit operations only use bounds on the k-th cell decomposition.
However, Ben-Or’s improvement of Steele and Yao bounds rests upon a
more detailed decomposition that we now abstract under the name of
entropic co-trees. We will prove the main technical lemma of this chapter
that provides upper bounds on the number and degrees of polynomial
equations and inequations defining the 𝑘-th cell decomposition based on
the entropic co-trees. This more general lemma will allow us to recover
all the results states above as well as Ben-Or’s result, and will be used to
prove a strengthening of Mulmuley’s result.

Definition 8.2.7 (𝑘-th entropic co-tree) Consider a deterministic graphing
representative 𝑇, and fix an element ⊤ of the set of control states. We can define
the 𝑘-th entropic co-tree of 𝑇 along ⊤ and the state cover inductively:

▶ 𝑘 = 0, the co-tree coT0(𝑇) is simply the root 𝑛𝜖 = R𝑛 × {⊤};
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▶ 𝑘 = 1, one considers the preimage of 𝑛𝜖 through𝑇, i.e.𝑇−1(R𝑛×{⊤}) the
set of all non-empty sets 𝛼(𝑚𝑒)−1(R𝑛 × {⊤}) and intersects it pairwise
with the state cover, leading to a finite family (of cardinality bounded by
the number of states multiplied by the number of edges fo 𝑇) (𝑛 𝑖𝑒)𝑖 defined
as 𝑛 𝑖 = 𝑇−1(𝑛𝜖) ∩ R𝑛 × {𝑖}. The first entropic co-tree coT1(𝑇) of 𝑇 is
then the tree defined by linking each 𝑛 𝑖𝑒 to 𝑛𝜖 with an edge labelled by 𝑚𝑒 ;

▶ 𝑘 + 1, suppose defined the 𝑘-th entropic co-tree of 𝑇, defined as a family of
elements 𝑛𝜋e where 𝜋 is a finite sequence of states of length at most 𝑘 and
e a sequence of edges of 𝑇 of the same length, and where 𝑛𝜋e and 𝑛𝜋′e′ are
linked by an edge labelled 𝑓 if and only if 𝜋′ = 𝜋.𝑠 and e′ = 𝑓 .e where
𝑠 is a state and 𝑓 an edge of 𝑇. We consider the subset of elements 𝑛𝜋e′
where 𝜋 is exactly of length 𝑘, and for each such element we define new
nodes 𝑛𝜋.𝑠𝑒.e′ defined as 𝛼(𝑚𝑒)−1(𝑛𝜋e′) ∩ R𝑛 × {𝑠} when it is non-empty.
The 𝑘 + 1-th entropic co-tree coT𝑘+1(𝑇) is defined by extending the 𝑘-th
entropic co-tree coT𝑘(𝑇), adding the nodes 𝑛𝜋.𝑠𝑒.e′ and linking them to 𝑛𝜋e′
with an edge labelled by 𝑒.

Remark 8.2.1 The co-tree can alternatively be defined non-inductively
in the following way: the 𝑛𝜋e for 𝜋 is a finite sequence of states and e a
sequence of edges of 𝑇 of the same length by 𝑛𝜖

𝜖 = R𝑛 × {⊤} and

𝑛𝜋.𝑠e.𝑒 =
[
𝛼(𝑚𝑒)−1(𝑛𝜋e )

]
∩ [R𝑛 × {𝑠}]

The 𝑘-th entropic co-tree of 𝑇 along ⊤ has as vertices the non-empty sets
𝑛𝜋e for 𝜋 and e of length at most 𝑘 and as only edges, links 𝑛𝜋.𝑠e.𝑒 → 𝑛𝜋e
labelled by 𝑚𝑒 .

This definition formalises a notion that appears more or less clearly in
the work of Lipton and Steele, and of Ben-Or, as well as in the proof by
Mulmuley. The nodes for paths of length 𝑘 in the 𝑘-th co-tree corresponds
to the 𝑘-th cell decomposition, and the corresponding path defines the
polynomials describing the semi-algebraic set decided by a computational
tree. The co-tree can be used to reconstruct the algebraic computation
tree 𝑇 from the graphing representative [𝑇], or constructs some algebraic
computation tree (actually a forest) that approximates the computation
of the graphing 𝐹 under study when the latter is not equal to [𝑇] for
some tree 𝑇.

Definition 8.2.8 (𝑘-th computational forest) Consider a deterministic graph-
ing 𝑇, and fix an element⊤ of the set of control states. We define the 𝑘-th compu-
tational forest of𝑇 along⊤ and the state cover as follows. Let coT𝑘(𝑇) be the 𝑘-th
entropic co-tree of 𝑇. The 𝑘-th computational forest of 𝑇 is defined by regrouping
all elements 𝑛𝜋

𝑒.®𝑒′ of length 𝑚: if the set 𝑁𝑚
𝑒 = {𝑛𝜋

𝑒.®𝑒′ ∈ coT𝑘(𝑇) | len(𝜋) = 𝑚}
is non-empty it defines a new node 𝑁𝑚

𝑒 . Then one writes down an edge from
𝑁𝑚
𝑒 to 𝑁𝑚−1

𝑒′ , labelled by 𝑒, if and only if there exists 𝑛𝑠.𝜋
𝑒.𝑒′. ®𝑓
∈ 𝑁𝑚

𝑒 such that

𝑛𝜋
𝑒′. ®𝑓
∈ 𝑁𝑚−1

𝑒′ .

One checks easily that the 𝑘-th computational forest is indeed a forest:
an edge can exist between 𝑁𝑚

𝑒 and 𝑁𝑛
𝑓

only when 𝑛 = 𝑚 + 1, a prop-
erty that forbids cycles. The following proposition shows how the 𝑘-th
computational forest is linked to computational trees.

Proposition 8.2.7 If𝑇 is a computational tree of depth 𝑘, the 𝑘-th computational
forest of [𝑇] is a tree which defines straightforwardly a graphing (treeing)
representative of 𝑇.

We now state and prove an easy bound on the size of the entropic
co-trees.
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Proposition 8.2.8 (Size of the entropic co-trees) Let 𝑇 be a graphing
representative, 𝐸 its set of edges, and Seq𝑘(𝐸) the set of length 𝑘 sequences
of edges in 𝑇. The number of nodes of its 𝑘-th entropic co-tree coT𝑘(𝑇), as a
function 𝑛(𝑘) of 𝑘, is asymptotically bounded by Card(Seq𝑘(𝐸)).2(𝑘+1).ℎ([𝐺]).

Proof. For a fixed sequence ®𝑒, the number of elements 𝑛𝜋®𝑒 of length 𝑚 in
coT𝑘(𝑇) is bounded by the number of elements in the 𝑚-th cell decom-
position of 𝑇, and is therefore bounded by 𝑔(𝑚) = 2𝑚.ℎ([𝑇]) by Proposi-
tion 8.2.5. The number of sequences ®𝑒 is bounded by Card(Seq𝑘(𝐸)) and
therefore the size of coT𝑘(𝑇) is thus bounded by Card(Seq𝑘(𝐸)).2(𝑘+1).ℎ([𝑇]).

R

From the proof, one sees that the following variant of Proposition 8.2.6
holds.

Proposition 8.2.9 Let 𝐺 be a deterministic graphing with a finite set of edges 𝐸,
and Seq𝑘(𝐸) the set of length 𝑘 sequences of edges in 𝐺. We consider the state
cover entropy ℎ0([𝐺]) = lim𝑛→∞ 𝐻𝑛

X([𝐺], S) where S is the state cover. The
cardinality of the length 𝑘 nodes of the entropic co-tree of 𝐺, as a function 𝑐(𝑘)
of 𝑘, is asymptotically bounded by 𝑔(𝑘) = Card(Seq𝑘(𝐸)).2𝑘.ℎ0([𝐺]), which is
itself bounded by 2Card(𝐸).2𝑘.ℎ0([𝐺]).

The technical lemma

This definition formalises a notion that appears more or less clearly
in the work of Steele and Yao, and of Ben-Or, as well as in the proof
by Mulmuley. The vertices for paths of length 𝑘 in the 𝑘-th co-tree
corresponds to the 𝑘-th cell decomposition, and the corresponding path
defines the polynomials describing the semi-algebraic set decided by a
computational tree. While in Steele and Yao and Mulmuley’s proofs, one
obtain directly a polynomial for each cell, we here need to construct a
system of equations for each branch of the co-tree.

Given a crew𝑝(𝛼Rfull)-graphing representative 𝐺 we will write 𝜕
√
𝐺 the

maximal value of 𝑛 for which an instruction 𝑛
√
𝑖(𝑗) appears in the realiser

of an edge of 𝐺.

The proof of this theorem is long but simple to understand as it follows
Ben-Or’s method. We define, for each vertex of the 𝑘-th entropic co-tree,
a system of algebraic equations (each of degree at most 2). The system
is defined by induction on 𝑘, and uses the information of the specific
instruction used to extend the sequence indexing the vertex at each step.
For instance, the case of division follows Ben-Or’s method, introducing a
fresh variable and writing down two equations. Following Mulmuley
[124], the input variables are split into numerical and non-numerical [124]: Mulmuley (1999), Lower Bounds in

a Parallel Model without Bit Operationsinputs, and one assumes that indirect references do not depend on non-
numerical inputs. This implies that all indirect references have a fixed
value determined by the non-numerical input; hence in the analysis below
– which focuses on numerical inputs – indirect references correspond to
references to a fixed value register.

Lemma 8.2.10 Let 𝐺 be a computational graphing representative with edges
realised only by generators of the amc crew𝑝(𝛼Rfull), and Seq𝑘(𝐸) the set
of length 𝑘 sequences of edges in 𝐺. Suppose 𝐺 computes the membership
problem for 𝑊 ⊆ R𝑛 in 𝑘 steps, i.e. for each element of R𝑛 , 𝜋S(𝐺𝑘(𝑥)) = ⊤
if and only if 𝑥 ∈ 𝑊 . Then 𝑊 is a semi-algebraic set defined by at most
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Card(Seq𝑘(𝐸)).2𝑘.ℎ0([𝐺]) systems of 𝑝𝑘 equations of degree at most max(2, 𝜕
√
𝐺)

and involving at most 𝑝(𝑘 + 𝑛) variables and 𝑝(𝑘 + 𝑛) inequalities.

This theorem extends to the case of general computational graphings by
considering the algebraic degree of the graphing.

Definition 8.2.9 (Algebraic degree) Let 𝛼 : ⟨𝐺,R⟩ ↷ X be an amc. The
algebraic degree of an element of M⟨𝐺,R⟩ is the minimal number of generators
needed to express it. The algebraic degree of an 𝛼-graphing is the maximum of
the algebraic degrees of the realisers of its edges.

If an edge is realised by an element 𝑚 of algebraic degree 𝐷, then the
method above applies by introducing the𝐷 new equations corresponding
to the 𝐷 generators used to define 𝑚. The general result then follows.

Lemma 8.2.11 Let𝐺 be a crew𝑝(𝛼Rfull)-computational graphing representative,
Seq𝑘(𝐸) the set of length 𝑘 sequences of edges in 𝐺, and 𝐷 its algebraic degree.
Suppose 𝐺 computes the membership problem for 𝑊 ⊆ R𝑛 in 𝑘 steps, i.e.
for each element of R𝑛 , 𝜋S(𝐺𝑘(𝑥)) = ⊤ if and only if 𝑥 ∈ 𝑊 . Then 𝑊 is a
semi-algebraic set defined by at most Card(Seq𝑘(𝐸)).2𝑘.ℎ0([𝐺]) systems of 𝑝𝑘𝐷
equations of degree at most max(2, 𝜕

√
𝐺) and involving at most 𝑝𝐷(𝑘 + 𝑛)

variables.

8.3. Digression: a bit of algebraic geometry and
topology

The Milnor-Thom theorem

Some of the results above rely on the Milnor-Thom theorem. This theorem,
proved independently by Milnor [125] and Thom [126], provides a bound [125]: Milnor (1964), On the Betti numbers

of real varieties
[126]: Thom (1965), Sur l’homologie des
variétés algébriques réelles

on the sum of the Betti numbers of algebraic varieties in R𝑛 , depending on
𝑛 and the maximal degree 𝑘 of the polynomials defining it. A consequence
of this bound is that it also provides a bound on the zero-th Betti number,
i.e. the number of connected components. The following statement of
the Milnor-Thom theorem is adapted to semi-algebraic sets and is due to
Ben-Or [118]. [118]: Ben-Or (1983), Lower Bounds for Al-

gebraic Computation Trees

Theorem 8.3.1 Let 𝑉 ⊆ R𝑛 be a set defined by polynomial in·equations
(𝑛, 𝑚, ℎ ∈ N): 

𝑞1(𝑥1 , . . . , 𝑥𝑛) = 0
...
𝑞𝑚(𝑥1 , . . . , 𝑥𝑛) = 0
𝑝1(𝑥1 , . . . , 𝑥𝑛) > 0
...
𝑝𝑠(𝑥1 , . . . , 𝑥𝑛) > 0
𝑝𝑠+1(𝑥1 , . . . , 𝑥𝑛) ⩾ 0
...
𝑝ℎ(𝑥1 , . . . , 𝑥𝑛) ⩾ 0

for 𝑝𝑖 , 𝑞𝑖 ∈ R[𝑋1 , . . . , 𝑋𝑛] of degree lesser than 𝑑.

Then 𝛽0(𝑉) is at most 𝑑(2𝑑 − 1)𝑛+ℎ−1, where 𝑑 = max{2, deg(𝑞𝑖), deg(𝑝 𝑗)}.
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Algebraic surfaces for an optimization problem

Geometric Interpretation of Optimization Problems. We start by
showing how decision problems of a particular form induce a binary
partition of the space Z𝑑: the points that are accepted and those that are
rejected. Intuitively, the machine decides the problem if the partition it
induces refines the one of the problem.

We will consider problems of a very specific form: decisions problems
in Z3 associated to optimization problems. Let Popt be an optimization
problem on R𝑑. Solving Popt on an instance 𝑡 amounts to optimizing a
function 𝑓𝑡(·) over a space of parameters. We note MaxPopt(𝑡) this optimal
value. An affine function Param : [𝑝; 𝑞] → R𝑑 is called a parametrization
of Popt. Such a parametrization defines naturally a decision problem
Pdec: for all (𝑥, 𝑦, 𝑧) ∈ Z3, (𝑥, 𝑦, 𝑧) ∈ Pdec iff 𝑧 > 0, 𝑥/𝑧 ∈ [𝑝; 𝑞] and
𝑦/𝑧 ≤ MaxPopt ◦ Param(𝑥/𝑧).
In order to study the geometry of Pdec in a way that makes its connection
with Popt clear, we consider the ambient space to be R3, and we define the
ray [𝑝] of a point 𝑝 as the half-line starting at the origin and containing
𝑝. The projection Π(𝑝) of a point 𝑝 on a plane is the intersection of
[𝑝] and the affine plane A1 of equation 𝑧 = 1. For any point 𝑝 ∈ A1,
and all 𝑝1 ∈ [𝑝], Π(𝑝1) = 𝑝. It is clear that for (𝑝, 𝑝′, 𝑞) ∈ Z2 × N+,
Π((𝑝, 𝑝′, 𝑞)) = (𝑝/𝑞, 𝑝′/𝑞, 1).
The cone [𝐶] of a curve 𝐶 is the set of rays of points of the curve. The
projection Π(𝐶) of a surface or a curve 𝐶 is the set of projections of points
in 𝐶. We note Front the frontier set

Front = {(𝑥, 𝑦, 1) ∈ R3 | 𝑦 = MaxPopt ◦ Param(𝑥)}.

and we remark that

[Front] = {(𝑥, 𝑦, 𝑧) ∈ R2 × R+ | 𝑦/𝑧 = MaxPopt ◦ Param(𝑥/𝑧)}.

Finally, a machine 𝑀 decides the problem Pdec if the sub-partition of
accepting cells in Z3 induced by the machine is finer than the one defined
by the problem’s frontier [Front] (which is defined by the equation
𝑦/𝑧 ≤ MaxPopt ◦ Param(𝑥/𝑧)).

Parametric Complexity. We now further restrict the class of problems
we are interested in: we will only consider Popt such that Front is simple
enough. Precisely:

Definition 8.3.1 We say that Param is an affine parametrization of Popt if
Param; MaxPopt is

▶ convex
▶ piecewise linear, with breakpoints 𝜆1 < · · · < 𝜆𝜌

▶ such that the (𝜆𝑖)𝑖 and the (MaxPopt ◦ Param(𝜆𝑖))𝑖 are all rational.

The (parametric) complexity 𝜌(Param) is defined as the number of breakpoints
of Param; MaxPopt.

An optimization problem that admits an affine parametrization of com-
plexity 𝜌 is thus represented by a surface [Front] that is quite simple: the
cone of the graph of a piecewise affine function, constituted of 𝜌 segments.
We say that such a surface is a 𝜌-fan. This restriction seems quite serious
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when viewed geometrically. Nonetheless, many optimization problems
admit such a parametrization.

Definition 8.3.2 Let Popt be an optimization problem and Param be an affine
parametrization of it. The bitsize of the parametrization is the maximum of the
bitsizes of the numerators and denominators of the coordinates of the breakpoints
of Param; MaxPopt.

In the same way, we say that a 𝜌-fan is of bitsize 𝛽 if all its breakpoints are
rational and the bitsize of their coordinates is lesser thant 𝛽.

The following results are due to Murty [127] and Carstensen [128]. [127]: Murty (1980), Computational com-
plexity of parametric linear programming
[128]: Carstensen (1983), The Complexity
of Some Problems in Parametric Linear and
Combinatorial Programming

Theorem 8.3.2 There exists:

1. an affine parametrization of bitsize 𝑂(𝑛) and complexity 2Ω(𝑛) of com-
binatorial linear programming, where 𝑛 is the total number of variables
and constraints of the problem.

2. an affine parametrization of bitsize 𝑂(𝑛2) and complexity 2Ω(𝑛) of the
maxflow problem for directed and undirected networks, where 𝑛 is the
number of nodes in the network.

We refer the reader to Mulmuley’s paper [124, Thm. 3.1.3] for proofs,
discussions and references.

Algebraic Surfaces. An algebraic surface in R3 is a surface defined by
an equation of the form 𝑝(𝑥, 𝑦, 𝑧) = 0 where 𝑝 is a polynomial. If 𝑆 is
a set of surfaces, each defined by a polynomial, the total degree of 𝑆 is
defined as the sum of the degrees of polynomials defining the surfaces
in 𝑆.

Let 𝐾 be a compact of R3 delimited by algebraic surfaces and 𝑆 be a
finite set of algebraic surfaces, of total degree 𝛿. We can assume that 𝐾 is
actually delimited by two affine planes of equation 𝑧 = 𝜇 and 𝑧 = 2𝜇𝑧
and the cone of a rectangle {(𝑥, 𝑦, 1) | |𝑥|, |𝑦| ⩽ 𝜇𝑥,𝑦}, by taking any
such compact containing 𝐾 and adding the surfaces bounding 𝐾 to 𝑆. 𝑆
defines a partition of 𝐾 by considering maximal compact subspaces of 𝐾
whose boundaries are included in surfaces of 𝑆. Such elements are called
the cells of the decomposition associated to 𝑆.

Definition 8.3.3 Let 𝐾 be a compact of R3. A finite set of surfaces 𝑆 on 𝐾
separates a 𝜌-fan Fan on 𝐾 if the partition on Z3 ∩ 𝐾 induced by 𝑆 is finer
than the one induced by Fan.

Theorem 8.3.3 (Mulmuley) Let 𝑆 be a finite set of algebraic surfaces of total
degree 𝛿. There exists a polynomial 𝑃 such that, for all 𝜌 > 𝑃(𝛿), 𝑆 does not
separate 𝜌-fans.

8.4. Lower Bounds results

Ben-Or

We now recover Ben-Or result by obtaining a bound on the number
of connected components of the subsets 𝑊 ⊆ R𝑛 whose membership
problem is computed by a graphing in less than a given number of
iterations. This theorem is obtained by applying the Milnor-Thom theorem
on the obtained systems of equations to bound the number of connected
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components of each cell. Notice that in this case 𝑝 = 1 and 𝜕
√
𝐺 = 2

since the model of algebraic computation trees use only square roots. A
mode general result holds for algebraic computation trees extended with
arbitrary roots, but we here limit ourselves here to the original model.

Theorem 8.4.1 Let 𝐺 be a computational 𝛼Rfull-graphing representative trans-
lating an algebraic computational tree, Seq𝑘(𝐸) the set of length 𝑘 sequences of
edges in𝐺. Suppose𝐺 computes the membership problem for𝑊 ⊆ R𝑛 in 𝑘 steps.
Then𝑊 has at most Card(Seq𝑘(𝐸)).2𝑘.ℎ0([𝐺])+132𝑘+𝑛−1 connected components.

Proof. By Lemma 8.2.10 (using the fact that 𝑝 = 1 and 𝜕
√
𝐺 = 2), the prob-

lem𝑊 decided by𝐺 in 𝑘 steps is described by at most Card(Seq𝑘(𝐸)).2𝑘.ℎ0([𝐺])

systems of 𝑘 equations of degree 2 involving at most 𝑘 + 𝑛 variables and
at most 𝑘 inequalities. Applying Theorem 8.3.1, we deduce that each such
system of in·equations (of 𝑘 equations of degree 2 in R𝑘+𝑛) describes a
semi-algebraic variety 𝑆 such that 𝛽0(𝑆) < 2.3(𝑛+𝑘)+𝑘−1. This being true
for each of the Card(Seq𝑘(𝐸)).2𝑘.ℎ0([𝐺]) cells, we have that

𝛽0(𝑊) < Card(Seq𝑘(𝐸)).2𝑘.ℎ0([𝐺])+132𝑘+𝑛−1. R

Since a subset computed by a tree 𝑇 of depth 𝑘 is computed by |[𝑇]| in
𝑘 steps by Theorem 8.1.1, we get as a corollary the original theorem by
Ben-Or relating the number of connected components of a set𝑊 and the
depth of the algebraic computational trees that compute the membership
problem for𝑊 .

Corollary 8.4.2 ([118, Theorem 5]) Let 𝑊 ⊆ R𝑛 be any set, and let 𝑁 be
the maximum of the number of connected components of𝑊 and R𝑛 \𝑊 . An
algebraic computation tree computing the membership problem for𝑊 has height
Ω(log𝑁).

Proof. Let𝑇 be an algebraic computation tree computing the membership
problem for 𝑊 , and consider the computational treeing [𝑇]. Let 𝑑 be
the height of 𝑇; by definition of [𝑇] the membership problem for 𝑊
is computed in exactly 𝑑 steps. Thus, by the previous theorem, 𝑊 has
at most Card(Seq𝑘(𝐸)).2𝑑.ℎ0([𝑇])+132𝑑+𝑛−1 connected components. As the
interpretation of an algebraic computational tree, ℎ0([𝑇]) is at most equal
to 2, and Card(Seq𝑘(𝐸)) is bounded by 2𝑑. Hence 𝑁 ⩽ 2𝑑22𝑑+13𝑛−132𝑑,
i.e. 𝑑 = Ω(log𝑁). R

Cucker’s theorem

Cucker’s proof considers the problem defined as the following algebraic
set.

Definition 8.4.1 Define the set 𝔉er = {𝑥 ∈ R𝜔 | |𝑥| = 𝑛 ⇒ 𝑥2𝑛
1 + 𝑥2𝑛

2 = 1},
where |𝑥| = max{𝑛 ∈ 𝜔 | 𝑥𝑛 ≠ 0}.

It can be shown to lie within PtimeR (Proposition 3 in [129]), i.e. it is [129]: Cucker (1992), PR ≠ NCR

decided by a real Turing machine [130] – i.e. working with real numbers [130]: Blum et al. (1989), On a theory of
computation and complexity over the real
numbers: NP-completeness, recursive func-
tions and universal machines

and real operations –, running in polynomial time.

Theorem 8.4.3 The problem 𝔉er is in PtimeR.
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We now prove that 𝔉er is not computable by an algebraic circuit of
polylogarithmic depth Theorem 3.2 in [129]. The proof follows Cucker’s [129]: Cucker (1992), PR ≠ NCR

argument, but uses the lemma proved in the previous section.

Corollary 8.4.4 No algebraic circuit of depth 𝑘 = log𝑖 𝑛 and size 𝑘𝑝 compute
𝔉er.

Proof. For this, we will use the lower bounds result obtained in the pre-
vious section. Indeed, by Theorem 8.1.2 and Lemma 8.2.11, any problem
decided by an algebraic circuit of depth 𝑘 is a semi-algebraic set defined
by at most Card(Seq𝑘(𝐸)).2𝑘.ℎ0([𝐺]) systems of 𝑘 equations of degree at
most max(2, 𝜕

√
𝐺) = 2 (since only square roots are allowed in the model)

and involving at most 𝑘 + 𝑛 variables. But the curve 𝔉R
2𝑛 defined as

{𝑥2𝑛
1 + 𝑥2𝑛

2 − 1 = 0 | 𝑥1 , 𝑥2 ∈ R} is infinite. As a consequence, one of the
systems of equation must describe a set containing an infinite number of
points of 𝔉R

2𝑛 .

This set 𝑆 is characterized, up to some transformations on the set of
equations obtained from the entropic co-tree, by a finite system of
inequalities of the form

𝑠∧
𝑖=1
𝐹𝑖(𝑋1 , 𝑋2) = 0 ∧

𝑡∧
𝑗=1
𝐺 𝑗(𝑋1 , 𝑋2) < 0,

where 𝑡 is bounded by 𝑘𝑝 and the degree of the polynomials 𝐹𝑖 and 𝐺𝑖
are bounded by 2𝑘 . Moreover, since 𝔉R

2𝑛 is a curve and no points in 𝑆
must lie outside of it, we must have 𝑠 > 0.

Finally, the polynomials 𝐹𝑖 vanish on that infinite subset of the curve
and thus in a 1-dimensional component of the curve. Since the curve is
an irreducible one, this implies that every 𝐹𝑖 must vanish on the whole
curve. Using the fact that the ideal (𝑋2𝑛

1 + 𝑋2𝑛
2 − 1) is prime (and thus

radical), we conclude that all the 𝐹𝑖 are multiples of 𝑋2𝑛
1 +𝑋2𝑛

2 − 1 which
is impossible if their degree is bounded by 2log𝑖 𝑛 as it is strictly smaller
than 2𝑛 . R

Improving Mulmuley’s result

Prams over R and maxflow. We will now prove our strengthening of
Mulmuley’s lower bounds for ‘prams without bit operations’ [124]. For [124]: Mulmuley (1999), Lower Bounds in

a Parallel Model without Bit Operationsthis, we will combine the results from previous sections to establish the
following result.

Theorem 8.4.5 Let 𝑁 be a natural number and 𝑀 be an algebraic pram with
at most 2𝑂((log𝑁)𝑐 ) processors, where 𝑐 is any positive integer. Then 𝑀 does not
decide maxflow on inputs of length 𝑁 in 𝑂((log𝑁)𝑐) steps.

Proof. Let 𝑁 be an integer. Suppose that an algebraic pram 𝑀 with
division and roots, with at most 𝑝 = 2𝑂((log𝑁)𝑐 ) processors, computes
maxflow on inputs of length at most 𝑁 in time 𝑘 = 2𝑂((log𝑁)𝑐 ).

We know that |[𝑀]| has a finite set of edges 𝐸. Since the running time of
𝑀 is equal, up to a constant, to the computation time of the crew𝑝(𝛼Rfull)-
program |[𝑀]|, we deduce that if 𝑀 computes maxflow in 𝑘 steps, then
|[𝑀]| computes maxflow in at most 𝐶𝑘 steps where 𝐶 is a fixed constant.
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By Lemma 8.2.10, the problem decided by |[𝑀]| in 𝐶𝑘 steps defines a
system of equations separating the integral inputs accepted by 𝑀 from
the ones rejected. I.e. if 𝑀 computes maxflow in 𝐶𝑘 steps, then this
system of equations defines a set of algebraic surfaces that separate the
𝜌-fan defined by maxflow. Moreover, this system of equation has a total
degree bounded by 𝐶𝑘max(2, 𝜕

√
𝐺)2𝑝 × 2𝑂(Card(𝐸)) × 2𝑘.ℎ0(|[𝑀̃]|).

By Theorem 8.3.2 and Theorem 8.3.3, there exists a polynomial𝑃 such that
a finite set of algebraic surfaces of total degree 𝛿 cannot separate the 2Ω(𝑁)-
fan defined by maxflow as long as 2Ω(𝑁) > 𝑃(𝛿). But here the entropy
of 𝐺 is 𝑂(𝑝), as a consequence of Lemma 8.2.4. Hence 𝛿 = 𝑂(2𝑝2𝑘),
contradicting the hypotheses that 𝑝 = 2𝑂((log𝑁)𝑐 ) and 𝑘 = 2𝑂((log𝑁)𝑐 ). R

This extends Mulmuley’s result because of the following fact.

Proposition 8.4.6 A subset 𝐴 ⊆ Z𝑘 is decided by a division-free integer-valued
prams with 𝑘 processors in time 𝑡 if and only if there exists a division-free
algebraic prams with 𝑘 processors computing in time 𝑡 a subset 𝐵 ⊆ R𝑘 such
that:

{(𝑥1 , 𝑥2 , . . . , 𝑥𝑘) ∈ Z𝑘 | (𝑥1 , 𝑥2 , . . . , 𝑥𝑘) ∈ 𝐵} = 𝐴.

Proof. The proof is rather straightforward, since addition and multiplica-
tion of integers yield integers. As a consequence, the available operations
in division-free real prams cannot be used to construct non-integer values
from solely integer inputs. R

A consequence of this is that Mulmuley’s original result becomes a
corollary of Theorem 8.4.5. Indeed, suppose a pram without bit operations
computes the maxflow problem in polylogarithmic time. Then there
would exist an algebraic pram computing maxflow in polylogarithmic
time, a result contradicting Theorem 8.4.5.

Let us now consider the possibility of lifting this result to integer-valued
machines using division. Let 𝑀 be an integer-valued pram. We would
like to associate to it an algebraic pram 𝑀̃ such that 𝑀 and 𝑀̃ accept
the same (integer) values, with at most a polylogarithmic running time
overhead. This implies in particular that algebraic prams (with division,
and potentially roots) should be able to compute euclidean division
efficiently. It turns out that this is not the case. Indeed, we will show
that euclidean division by 2 is in fact not computable in polylogarithmic
time by algebraic prams even in the presence of division and arbitrary
root operations. This will be obtained using the above results based on
entropic co-trees and Mumuley’s geometric argument.

Theorem 8.4.7 Let 𝑁 be a natural number and 𝑀 be an algebraic pram with at
most 2𝑂((log𝑁)𝑐 ) processors, where 𝑐 is any positive integer. Then 𝑀 does not
compute euclidean division by 2 on inputs of length 𝑁 in 𝑂((log𝑁)𝑐) steps.

Proof. Suppose that an algebraic pram 𝑀 with division and roots, with
at most 𝑝 = 2𝑂((log𝑁)𝑐 ) processors, computes euclidean division by 2 on
inputs of length at most 𝑁 in time 𝑘 = 2𝑂((log𝑁)𝑐 ). We know that |[𝑀]|
has a finite set of edges 𝐸, and the running time of 𝑀 is equal, up to
a constant, to the computation time of the crew𝑝(𝛼Rfull)-program |[𝑀]|,
we deduce that if 𝑀 computes euclidean division in 𝑘 steps, then |[𝑀]|
computes euclidean division by 2 in at most 𝐶𝑘 steps where 𝐶 is a fixed
constant.



8. Unifying algebraic lower bounds 146

Consider the following problem:

{(𝑥, 𝑦, 1) | 𝑦 ⩽ 𝑥//2}

It is defined by the frontier set

Front = {(𝑥, 𝑦, 1) ∈ R3 | 𝑦 = 𝑥//2}.

and we remark that the induced cone

[Front] = {(𝑥, 𝑦, 𝑧) ∈ R2 × R+ | 𝑦/𝑧 = MaxPopt ◦ Param(𝑥/𝑧)}.

is a 𝜌-fan where 𝜌 = 2Ω(𝑁) is exponential in the maximal size of the
inputs.

By Lemma 8.2.10, the problem decided by |[𝑀]| in 𝐶𝑘 steps defines a
system of equations separating the integral inputs accepted by 𝑀 from
the ones rejected. I.e. if 𝑀 computes euclidean division by 2 in 𝐶𝑘 steps,
then this system of equations defines a set of algebraic surfaces that
separate the 𝜌-fan defined above. Moreover, this system of equation has
a total degree bounded by 𝐶𝑘max(2, 𝜕

√
𝐺)2𝑝 × 2𝑂(Card(𝐸)) × 2𝑘.ℎ0(|[𝑀̃]|).

Now by Theorem 8.3.3, there exists a polynomial 𝑃 such that a finite set of
algebraic surfaces of total degree 𝛿 cannot separate the 2Ω(𝑁)-fan defined
by euclidean division by 2 as long as 2Ω(𝑁) > 𝑃(𝛿). But here the entropy
of 𝐺 is 𝑂(𝑝), as a consequence of Lemma 8.2.4. Hence 𝛿 = 𝑂(2𝑝2𝑘),
contradicting the hypotheses that 𝑝 = 2𝑂((log𝑁)𝑐 ) and 𝑘 = 2𝑂((log𝑁)𝑐 ). R

Before ending this chapter, I wish to note that Mulmuley’s method can
be used to show lower bounds for other problems than maxflow. The
technique presented here applies in these cases as well, but I chose
to focus on maxflow because of its particular importance: it is indeed
Ptime-complete [131]. [131]: Goldschlager et al. (1982), The max-

imum flow problem is log space complete for
P



The mathematical structure of
abstract programs 9.

I have exposed until this point how abstract models of computation
can lead to techniques which can be used in program analysis or to
establish complexity lower bounds. However, the notion of amc did not
stem from these fields but emerged from work on semantics of linear
logic, and more specifically the models I introduced under the name
Interaction graphs. One important aspect inherited from these origins is
the connection with operator algebras. Indeed, while amc and abstract
programs or graphings do not appeal to notion in operator algebras, they
are intimately related to the field. In particular, the set of graphings is a
tractable (dense) subset of a von Neumann algebra.

We note here that considering abstract programs and not graphings would
make the discussion more complex, as two non-equivalent programs
can define the same graphing. In this light, we therefore study only
graphings here, noting that a finer distinction (i.e. a smaller equational
theory) would lead to more complex algebraic structures.

9.1. Induced action on graphings

We will now establish some formal connection between the abstract
setting considered up to this point and operator algebras. Before doing
so, we define a notion of composition of two graphings.

Definition 9.1.1 Let 𝛼 be an amc, and 𝐺, 𝐻 be two 𝛼-graphing representatives.
The composition 𝐻 ◦ 𝐺 is the graphing formally defined by the following
representative:

{(𝑚𝐻
𝑒 𝑚

𝐺
𝑓
, 𝜔𝐻

𝑒 𝜔
𝐺
𝑓
| 𝑒 ∈ 𝐸𝐻 , 𝑓 ∈ 𝐸𝐺}.

Note that in general some products𝑚𝐻
𝑒 𝑚

𝐺
𝑓

are such that 𝛼(𝑚𝐻
𝑒 𝑚

𝐺
𝑓
) is undefined

everywhere1, and 𝐻 ◦ 𝐺 is equivalent (up to the full equational theory) to a 1: For instance, read0 ◦ read1 in the amc
of Turing machines 𝛼tm.graphing representative with less edges (as one can remove those ‘trivial’

products).

We now notice that the set of graphings:

▶ contains the identity {(1, 1)},
▶ is closed under linearΩ-combinations whereΩ is the set of weights,

as defined by 𝐺 + 𝐻 = 𝐺 ⊎ 𝐻 (the disjoint union) and:

𝜆{(𝑚𝐺
𝑒 , 𝜔

𝐺
𝑒 ) | 𝑒 ∈ 𝐸𝐺} = {(𝑚𝐺

𝑒 ,𝜆𝜔
𝐺
𝑒 ) | 𝑒 ∈ 𝐸𝐺},

▶ is closed under product, where the product is defined as the
composition.

As such it has the structure of an abstract Ω-algebra.

Involutions. If in addition the monoid action is a group action and
the monoid Ω is equipped with an involution (·)∗, then one can define
an involution edge-wise. If 𝜙𝑒 : 𝑆𝑒 → 𝑇𝑒 is an edge, then we define
𝜙𝑒∗ = 𝜙−1 : 𝑇𝑒 → 𝑆𝑒 . This is clearly a product-reversing involution,
making the set of graphings an involutive algebra.
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Theorem 9.1.1 Let 𝛼 : 𝕄(𝐼)↷ X be an amc, and Ω a monoid of weights. Then
the set ofΩ-weighted 𝛼-graphings GraphingsΩ(𝛼) has a structure ofΩ-algebra.
Moreover, if 𝕄(𝐼) is a group and Ω possesses an involution, GraphingsΩ(𝛼)
has the structure of an involutive algebra.

Moreover, there is a straightforward representation of this algebra as a
linear operator on the Hilbert space 𝐿2(X,Ω) of square-summable mea-
surable maps from X→ Ω. First, one defines the following generalisation
of the Koopman (of composition) operator:

Λ(𝑚𝑒 ,𝜔𝑒 ) :
(
𝑓 ∈ 𝐿2(X,Ω) ↦→ 𝜔𝑒 𝑓 ◦ 𝛼(𝑚𝑒) ∈ 𝐿2(X,Ω)

)
.

This is extended to graphings by taking the sum of edges:

Λ𝐺 =
∑
𝑒∈𝐸𝐺

Λ(𝑚𝐺
𝑒 ,𝜔

𝐺
𝑒 ).

Since all operation on M(X) are defined pointwise, it is not difficult to
check that this defines a linear operator:

Λ(𝑚𝑒 ,𝜔𝑒 )( 𝑓 + 𝑔) = Λ(𝑚𝑒 ,𝜔𝑒 )( 𝑓 ) +Λ(𝑚𝑒 ,𝜔𝑒 )(𝑔),
Λ(𝑚𝑒 ,𝜔𝑒 )( 𝑓 × 𝑔) = Λ(𝑚𝑒 ,𝜔𝑒 )( 𝑓 ) ×Λ(𝑚𝑒 ,𝜔𝑒 )(𝑔),

Λ(𝑚𝑒 ,𝜔𝑒 )(𝜆 𝑓 ) = 𝜆Λ(𝑚𝑒 ,𝜔𝑒 )( 𝑓 ).

Moreover, the Ω-algebra structure is compatible with this representation.
Indeed:

𝜆Λ(𝑚𝑒 ,𝜔𝑒 ) = Λ(𝑚𝑒 ,𝜆𝜔𝑒 ) ,

and by definition Λ𝐹+𝐺 = Λ𝐹 +Λ𝐺 and Λ𝐹𝐺 = Λ𝐺Λ𝐹 . Note the represen-
tation reverses the product; it is an anti-representation2. 2: When 𝕄(𝐼) is a group, one can sim-

ilarly define a representation (i.e. not
reversing the product) by simply pre-
composing by 𝛼(𝜄−1) instead of 𝛼(𝜄).

A consequence of these identities is that the algebra GraphingsΩ(𝛼) is
generated by elements of the form (𝜄, 1) for 𝜄 ∈ 𝐼.
In case 𝛼(𝜄) has an essentially bounded Radon-Nikodym derivative, the
operator Λ(𝜄,1) is bounded and its norm is



 𝑑𝜇

𝑑𝛼(𝜄) ◦ 𝜇






∞
=

(
sup

X

(
𝑑𝜇

𝑑𝛼(𝜄) ◦ 𝜇

)) 1
2

.



9. The mathematical structure of abstract programs 149

Indeed, this is established by the following computation:

Λ(𝜄,1)( 𝑓 )

2 =

∫
X
( 𝑓 ◦ 𝛼(𝜄))(𝑥)( 𝑓 ◦ 𝛼(𝜄))(𝑥)𝑑𝜇

=

∫
X
|( 𝑓 ◦ 𝛼(𝜄))(𝑥)|2𝑑𝜇

=

∫
X
|( 𝑓 ◦ 𝛼(𝜄))(𝑥)|2

(
𝑑𝜇

𝑑𝛼(𝜄) ◦ 𝜇

)
𝑑𝛼(𝜄) ◦ 𝜇

≤
∫

X
| 𝑓 (𝑥)|2 sup

X

(
𝑑𝜇

𝑑𝛼(𝜄) ◦ 𝜇

)
𝑑𝜇

≤
∫

X
| 𝑓 (𝑥)|2





 𝑑𝜇

𝑑𝛼(𝜄) ◦ 𝜇





2

∞
𝑑𝜇

≤




 𝑑𝜇

𝑑𝛼(𝜄) ◦ 𝜇





2

∞

∫
X
| 𝑓 (𝑥)|2𝑑𝜇

≤




 𝑑𝜇

𝑑𝛼(𝜄) ◦ 𝜇





2

∞



 𝑓 

2
2 .

Graphings as generalising elements of a von Neumann algebra. We
now restrict to the case of a group action by measure-preserving trans-
formation. We can show the following theorem which relates graphings
with elements of Murray and von Neumann’s group measure space con-
struction. Note that nowadays the latter construction stemming from a
group action 𝛼 : 𝐺 ↷ X is understood as the crossed product 𝐿∞(X)⋊𝛼̄𝐺
of the algebra of essentially bounded functions X → C by the action
induced by 𝛼. This point of view shows clearly the two essential algebras
arising from the construction:

▶ the algebra 𝐿∞(X)which is an abelian von Neumann algebra, which
will be maximal in the crossed product;

▶ the algebra 𝔘 generated by the unitaries defined by the elements
of 𝐺.

Theorem 9.1.2 Let 𝛼 : 𝕄(𝐼)↷ X be a group action by measure-preserving
transformations. Then the algebra of finite C-weighted 𝛼-graphings can be
represented as a dense sub-algebra of𝔘 in the group measure space von Neumann
algebra.

Proof. The group measure space construction can be defined as the
crossed product of 𝐿∞(X)with the action induced by 𝛼. More precisely,
we define 𝐿∞(X) as the algebra of essentially bounded functions X→ C.
The elements of this algebra act naturally on 𝐿2(X) by left multiplication;
writing 𝑀 𝑓 the operator induced by 𝑓 ∈ 𝐿∞(X), this comes from:

𝑀 𝑓 𝑔



2
2 =

∫
X
𝑓 (𝑥)𝑔(𝑥) 𝑓 (𝑥)𝑔(𝑥)𝑑𝜇

=

∫
X
| 𝑓 (𝑥)|2|𝑔(𝑥)|2𝑑𝜇

≤
∫

X



 𝑓 

2
∞ |𝑔(𝑥)|

2𝑑𝜇

≤


 𝑓 

2
∞

∫
X
|𝑔(𝑥)|2𝑑𝜇

≤


 𝑓 

2
∞



𝑔

2
2 .
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Now the action 𝛼 lifts to 𝐿∞(X) by letting 𝛼̄(𝜄) : 𝑓 ∈ 𝐿∞(X) ↦→ 𝑓 ◦ 𝛼(𝜄) ∈
𝐿∞(X). Note here that since 𝛼 acts by measure-preserving transformations,
the lifted action 𝛼̄ is an action by unitaries.

The crossed product 𝐿∞(X) ⋊𝛼̄ 𝕄(𝐼) is then defined as the von Neumann
algebra acting on the space 𝐿2(𝕄(𝐼), 𝐿2(X)) generated by the following
operators (for 𝑔 ∈ 𝐿∞(X) and 𝜄 ∈ 𝕄(𝐼)):

𝜌𝑔 :𝜉 ∈ 𝐿2(𝕄(𝐼), 𝐿2(X)) ↦→
(
𝑚 ↦→ 𝛼̄(𝑚−1)(𝑔)𝜉(𝑚)

)
𝜋𝜄 :𝜉 ∈ 𝐿2(𝕄(𝐼), 𝐿2(X)) ↦→ 𝜉(𝑚𝜄−1)

This defines:

▶ a representation 𝔄 of 𝐿∞(X) as the von Neumann algebra generated
by all 𝜌𝑔 for 𝑔 ∈ 𝐿∞(X);

▶ the crossed product algebra𝔑 = 𝐿∞(X)⋊𝛼̄𝕄(𝐼) as the von Neumann
algebra generated by all 𝜌𝑔 for 𝑔 ∈ 𝐿∞(X) and all 𝜋𝜄 for 𝜄 ∈ 𝕄(𝐼);

▶ a von Neumann algebra 𝔘 ⊂ 𝔑 generated by the unitaries 𝜋𝜄 for
𝜄 ∈ 𝕄(𝐼);

We note that 𝔄 is then a maximal abelian sub-algebra3 of the crossed 3: Maximal abelian sub-algebra will ap-
pear and be discussed in chapter 11.product 𝐿∞(X) ⋊𝛼̄ 𝕄(𝐼).

Now, we can represent the algebra GraphingsC(𝛼) as follows on 𝐿∞(X)⋊𝛼̄

𝕄(𝐼). We simply define the representation of elements of the form (𝜄, 1):

Π(𝜄,1) : 𝜉 ∈ 𝐿2(𝕄(𝐼), 𝐿2(X)) ↦→ 𝜉(𝑚𝜄−1),

and extend to linear combination by lettingΠ𝜆(𝜄1 ,1)+(𝜄2) = 𝜆Π(𝜄1 ,1)+Π(𝜄2 ,1).
We can show this is a representation by checking that it preserves
products:

Π(𝜄1 ,1)Π(𝜄2 ,1)(𝜉) = Π(𝜄1 ,1)(𝜉(𝑚𝜄−1
2 ))

= 𝜉(𝑚𝜄−1
2 𝜄−1

1 )
= 𝜉(𝑚(𝜄1𝜄2)−1)
= Π(𝜄1 𝜄2)(𝜉).

Now, since 𝜋𝜄 and Π(𝜄,1) coincide, and since 𝔘 is the von Neumann
algebra generated by all 𝜋𝜄 , we have that all finite linear combinations of
elements of the form Π(𝜄,1) belong to 𝔘. More precisely, the algebra 𝔘 is
the closure of all such finite linear combinations with respect to the weak
operator topology. This implies that the set of all finite 𝛼-graphings is
represented as a dense sub-algebra of 𝔘. R

This establishes more formally the intuition behind the introduction
of graphings. Graphings generalise the operators induced by a group-
measure space construction, while keeping to a more tractable setting.
This is one of the most important intuitions behind the work exposed in
the remaining parts of this section and the upcoming chapters.

9.2. Lifting the action, defining execution

As we have seen in the previous section, an abstract model of computation
defines an algebra of graphings. One interesting fact is that the action
𝛼 : 𝕄(𝐼) ↷ X then lifts to an action ⌊𝛼⌋ : 𝕄(𝐼) ↷ Graphings(𝛼). The
corresponding set of machines Graphings(⌊𝛼⌋) is in fact isomorphic to
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the set Graphings(𝛼). Indeed, abstract ⌊𝛼⌋-graphings act trivially – i.e.
through left multiplication – on Graphings(𝛼).
However, there is a more involved and interesting structure, in which one
does not simply act through left multiplication, but through execution.
Execution was historically defined as the solution of a functional equation
[7]. From a category-theoretic point of view it corresponds to a trace [132] [7]: Girard (2006), Geometry of Interaction

IV: the Feedback Equation
[132]: Joyal et al. (1996), Traced monoidal
categories

or in some cases a partial trace [133].

[133]: Malherbe et al. (2012), Partially
traced categories

More formally, consider that a machine 𝑀 ∈ Graphings(𝛼). We can
define its support as the minimal subspace 𝑌 ⊂ X such that for all edge
𝑒 ∈ 𝐸𝑀 , dom(𝛼(𝑚𝑒)) ∪ im(𝛼(𝑚𝑒)) ⊂ 𝑌. Now, given two machines 𝑀, 𝑁 ,
one can write down their support as𝑌𝑀 and𝑌𝑁 and define 𝐶 = 𝑌𝑀 ∩𝑌𝑁 .
Intuitively, if 𝑀 and 𝑁 were programs corresponding to proofs via
the geometry of interaction representation, 𝑌𝑀 and 𝑌𝑁 represent the
occurrences of formulas appearing in 𝑀 and 𝑁 respectively, and 𝐶
would be those occurrences that appear in both proofs, i.e. the formulas
appearing in cut rules.

Operator-theoretic version

The feedback equation is a functional equation that can in this case be
expressed as follows, where we understand 𝑀 and 𝑁 as acting on the
subspace4 𝐿2(𝑌𝑀 \ 𝐶) ⊕ 𝐿2(𝐶) ⊕ 𝐿2(𝑌𝑁 \ 𝐶) of 𝐿2(X): 4: We here voluntarily avoid talking

about sets of states, but those can be
accommodated: a machine does not
act on 𝐿2(X) but on 𝐿2(X) ⊗ 𝐿2(𝑆𝑀 ); it
should be clear that this implies the so-
lution to the equation, if it exists, will
act on 𝐿2(X) ⊗ 𝐿2(𝑆𝑀 ) ⊗ 𝐿2(𝑆𝑁 ), i.e.
𝐿2(X) ⊗ 𝐿2(𝑆𝑀 × 𝑆𝑁 ), and therefore will
have set of control states 𝑆𝑀 × 𝑆𝑁 .

𝑀(𝑦 ⊕ 𝑐) = 𝑦′ ⊕ 𝑐′
𝑁(𝑐′ ⊕ 𝑧) = 𝑐 ⊕ 𝑧′ (9.1)

It has a solution when there exists Ex(𝑀, 𝑁) such that Ex(𝑀, 𝑁)(𝑦⊕ 𝑧) =
𝑦′ ⊕ 𝑧′ if and only if there exists 𝑐, 𝑐′ satisfying the equation.

The special case of matrices

If 𝑀 and 𝑁 are matrices, one can decompose them in block matrices
along 𝑌𝑀 \ 𝐶, 𝐶, and 𝑌𝑁 \ 𝐶, i.e.(

𝑀𝑌,𝑌 𝑀𝐶,𝑌

𝑀𝑌,𝐶 𝑀𝐶,𝐶

)
,

(
𝑁𝐶,𝐶 𝑁𝑍,𝐶

𝑁𝐶,𝑍 𝑁𝑍,𝑍

)
.

When it is defined, the following matrix is a solution to the equation:(
Ex(𝑀, 𝑁)𝑌,𝑌 Ex(𝑀, 𝑁)𝑌,𝑍
Ex(𝑀, 𝑁)𝑍,𝑌 Ex(𝑀, 𝑁)𝑍,𝑍

)
,

where

Ex(𝑀, 𝑁)𝑌,𝑌 = 𝑀𝑌,𝑌 +𝑀𝑌,𝐶(1 − 𝑁𝐶,𝐶𝑀𝐶,𝐶)−1𝑁𝐶,𝐶𝑀𝐶,𝑌

Ex(𝑀, 𝑁)𝑌,𝑍 = 𝑀𝑌,𝐶(1 − 𝑁𝐶,𝐶𝑀𝐶,𝐶)−1𝑁𝐶,𝑍

Ex(𝑀, 𝑁)𝑍,𝑌 = 𝑁𝑍,𝐶(1 −𝑀𝐶,𝐶𝑁𝐶,𝐶)−1𝑀𝐶,𝑌

Ex(𝑀, 𝑁)𝑍,𝑍 = 𝑁𝑍,𝑍 + 𝑁𝑍,𝐶(1 −𝑀𝐶,𝐶𝑁𝐶,𝐶)−1𝑀𝐶,𝐶𝑁𝐶,𝑍 .

When the norm of 𝑀 and 𝑁 is strictly smaller than 1, the product 𝑀𝑁
has norm at most 1, and this is well-defined. When the norm of both
𝑀 and 𝑁 is smaller or equal to 1, this operator can still be defined by
continuity [7]. But if one does not care about convergence, it is possible [7]: Girard (2006), Geometry of Interaction

IV: the Feedback Equation
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to define a general solution at the cost of extracting ourselves from the
operator-theoretic framework; this is what we are doing when working
with graphings.

Diagrammatically

Before explaining this, let us notice that the equation can be expressed
through the following diagram, where we identify the 𝐶 component of
the input of each operator to the 𝐶 component of the output of the other.
This is a particular case of the diagram used to define categorical traces
[132]. [132]: Joyal et al. (1996), Traced monoidal

categories

M

N

𝑌𝑀 \ 𝐶

𝐶

𝑌𝑁 \ 𝐶

𝑌𝑀 \ 𝐶

𝐶 𝐶

𝑌𝑁 \ 𝐶

We can see here that Ex(𝑀, 𝑁) is defined as a fixpoint. This is also visible
in the concrete expression on matrices, the fixpoint being computed by
the expression (1 − 𝐴)−1 which corresponds to 1 + 𝐴 + 𝐴2 + . . . (when
∥𝐴∥ < 1). We will first try to define this directly on graphs.

Graphs

Now, if 𝑀 and 𝑁 are graphs, say 𝑀 = (𝑉𝑀 , 𝐸𝑀 , 𝑠𝑀 , 𝑡𝑀) and 𝑁 =

(𝑉𝑁 , 𝐸𝑁 , 𝑠𝑁 , 𝑡𝑁 ), we can try to construct a graph which is a solution
to the above equation. Here we identify graphs to matrices (the matrix
associated being the adjacency matrix of the graph), and we therefore
consider that a graph acts on its set of vertices as a sort of relations: for
instance 𝑀 produces, for each 𝑣 ∈ 𝑉𝑀 , a set 𝑀𝑣 ⊂ 𝑉𝑀 . If the graph is
weighted, we can rather express 𝑀𝑣 as a vector in C(𝑉𝑀): the coefficient
of 𝑣′ in 𝑀𝑣 is computed as5 ∑

𝑒∈𝐸𝑀 (𝑣,𝑣′) 𝜔(𝑒). 5: We here write 𝐸𝑀 (𝑣, 𝑣′) the set {𝑒 ∈
𝐸𝑀 | 𝑠𝑀 (𝑒) = 𝑣, 𝑡𝑀 (𝑒) = 𝑣′}.

It is know that under this identification, if 𝐺 is identified to the matrix 𝑀
then the graph of paths of length exactly 𝑘 in the graph 𝐺 is identified
to 𝑀𝑘 . The graph fixpoint of the above equation is then equal to the
following: Ex(𝑀, 𝑁) is defined as (𝑉, 𝐸, 𝑠, 𝑡), where6: 6: We write 𝑠· to denote either 𝑀 or 𝑠𝑁

depending on the given argument; we
will use 𝑡· in a similar way.▶ 𝑉 = (𝑉𝑀 \ 𝑉𝑀 ∩ 𝑉𝑁 ) ∪ (𝑉𝑁 \ 𝑉𝑀 ∩ 𝑉𝑁 ), i.e. the symmetric

difference between 𝑉𝑀 and 𝑉𝑁 ;
▶ 𝐸 = {𝜋 = 𝑒0𝑒1 . . . 𝑒𝑛𝜋 | ∀𝑖 , (𝑒𝑖 ∈ 𝐸𝑀 ⇔ 𝑒𝑖+1 ∈ 𝐸𝑁 ) ∧ 𝑠 ·(𝑒𝑖+1 =

𝑡 ·(𝑒𝑖)}, the set of alternating paths between 𝑀 and 𝑁 ;
▶ 𝑠 : 𝐸→ 𝑉 is defined by 𝑠(𝜋) = 𝑠 ·(𝑒0);
▶ 𝑡 : 𝐸→ 𝑉 is defined by 𝑡(𝜋) = 𝑡 ·(𝑒𝑛𝜋 );

Now, when the graphs 𝑀, 𝑁 correspond to operators of norm at most 1,
it can be shown that the graph Ex(𝑀, 𝑁) corresponds to the matrix above
defining the solution to the feedback equation [15]. But note that this [15]: Seiller (2012), Interaction Graphs: Mul-

tiplicativesgraph is always defined, even when the corresponding operators are of
norm more than 1! However, up to this point, we are only working with
finite graphs. We will now extend this construction to 𝛼-graphings.
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𝑈𝑠 𝑈𝑡

𝑉𝑡 𝑉𝑠

𝜙

𝜓
Figure 9.1.: Example of a plugging be-
tween graphings (over the real line)

Graphings

The above definition of the execution on graphs provides a natural way
to generalise the operation to 𝛼-graphings. Indeed, the naive approach
is to define the operation in the same way, i.e. define an 𝛼-graphing
of alternating paths. Giving it some thoughts, one can realise that this
requires some adaptations, but it will turn out that this approach works
out. For simplicity, and coherence with published papers [17], we will [17]: Seiller (2017), Interaction Graphs:

Graphingshere work with camc in order to specify conditions.

The main difficulty in defining the 𝛼-graphing of alternating paths is
that the 𝛼-graphing representatives 𝑀, 𝑁 we are starting from may not
be decomposed along the separation between the subspaces 𝑌𝑀 \ 𝐶, 𝐶,
and 𝑌𝑁 \ 𝐶, as illustrated in Figure 9.1. This will require a splitting of the
edges of 𝑀 and 𝑁 along this separation. However, once this splitting
is performed, the definition will be a straightforward adaptation of the
execution on graphs. Let us now delve into the technical details.

Now, let 𝑀, 𝑁 be graphing representatives. We define the support 𝑌𝑀
as the subspace of X defined as ∪𝑒∈𝐸𝑀dom(𝛼(𝑚𝑒)) ∪ im(𝛼(𝑚𝑒)) as above.
We can define 𝑌𝑁 in the same way. The subspace 𝐶 is then defined
as 𝑌𝑀 ∩ 𝑌𝑁 . The issue is that given some 𝑒 ∈ 𝐸𝑀 , it may be true that
dom(𝛼(𝑚𝑒)) is neither included in 𝑌𝑁 \ 𝐶 nor in 𝐶, but somehow stands
in between7. A similar problem arises with im(𝛼(𝑚𝑒)): it can intersect 7: This is not possible in graphs because

the underlying space is discrete.non trivially both 𝑌𝑀 \ 𝐶 and 𝐶.

We will therefore consider a new 𝛼-graphing representative 𝑀/𝐶 which
consists in splitting each edge 𝑒 in four distinct edges (𝑒 , in, in), (𝑒 , in, out),
(𝑒 , out, in), and (𝑒 , out, out). Those as defined as follows; we only describe
the source sets as the weight and monoid element associated are those of
the initial edge 𝑒:

▶ (𝑒 , in, in) has source 𝑆𝑒 ∩ (𝑌𝑀 \ 𝐶) ∩ (𝛼(𝑚𝑒)−1(𝑌𝑀 \ 𝐶));
▶ (𝑒 , in, out) has source 𝑆𝑒 ∩ (𝑌𝑀 \ 𝐶) ∩ (𝛼(𝑚𝑒)−1(𝐶));
▶ (𝑒 , out, in) has source 𝑆𝑒 ∩ 𝐶 ∩ (𝛼(𝑚𝑒)−1(𝑌𝑀 \ 𝐶));
▶ (𝑒 , out, out) has source 𝑆𝑒 ∩ 𝐶 ∩ (𝛼(𝑚𝑒)−1(𝐶)).

This graphing representative is equivalent (for the full equational theory)
to the initial graphing representative 𝑀.

We can define in a similar way the 𝛼-graphing representative 𝑁/𝐶 . It
is then possible to define the 𝛼-graphing (representative) of alternating
paths:

▶ its set of edges is defined as the set of alternating paths from
(𝑌𝑀 \ 𝐶) ∪ (𝑌𝑁 \ 𝑆) to itself, i.e. sequence 𝜋 = 𝑒0𝑒1 . . . 𝑒𝑛 such that:

• 𝑒𝑖 ∈ 𝑀/𝐶 if and only if 𝑒𝑖+1 ∈ 𝑁/𝐶 for 𝑖 = 0, . . . , 𝑛 − 1,
• 𝑒0 = (𝑒 , in, out),
• 𝑒𝑛 = (𝑒 , out, in),
• 𝑒𝑖 = (𝑒 , out, out) for 𝑖 = 1, . . . , 𝑛 − 1,
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• 𝛼(𝑚𝑒𝑖 )(𝑆𝑒𝑖 ) ⊆ 𝑆𝑒𝑖+1 for 𝑖 = 0, . . . , 𝑛 − 1.
▶ for𝜋 ∈ 𝐸Ex(𝑀,𝑁), the monoid element𝑚𝜋 is equal to𝑚𝑒𝑛𝑚𝑒𝑛−1 . . . 𝑚𝑒0 ;
▶ for 𝜋 ∈ 𝐸Ex(𝑀,𝑁), the source is the subspace of 𝑆𝑒0 containing the

points that go through all edges, i.e.

𝑆𝜋 = 𝑆𝑒0 ∩ 𝛼(𝑚𝑒0)−1(𝑆𝑒1) ∩ · · · ∩ 𝛼(𝑚𝑒𝑛−1 . . . 𝑚𝑒1𝑚𝑒0)−1(𝑆𝑒𝑛 ).

▶ for𝜋 ∈ 𝐸Ex(𝑀,𝑁), the weight (if one works with weighted graphings)
𝜔𝜋 is defined as 𝜔𝑒𝑛𝜔𝑒𝑛−1 . . .𝜔𝑒0 .

We have thus defined a general notion of execution that captures all
the examples above. Indeed, when adding restrictions, we recover the
previous definitions:

▶ if the space is discrete, this corresponds to the execution of graphs,
which generalises the execution of finite matrices;

▶ if the space is not discrete, we can associate operators to 𝑀 and
𝑁 and show that the execution of graphings corresponds to the
execution of these operators – when the latter is defined.

Remark 9.2.1 One important remark here is related to dynamical systems.
If 𝑀 and 𝑁 are deterministic, they correspond to partial dynamical
systems DynS(𝑀) and DynS(𝑁). Then the execution can be alternatively
defined as the graphing of finite maximal orbits in

(DynS(𝑀) + 1𝑌𝑁\𝑌𝑀 )(DynS(𝑁) + 1𝑌𝑀\𝑌𝑁 ).

The main property about the execution is associativity, stated in the
following theorem.

Theorem 9.2.1 (Associativity of execution) Given three 𝛼-graphings 𝑀, 𝑁 ,
and 𝑃 with supports 𝑌𝑀 , 𝑌𝑁 and 𝑌𝑃 respectively. If8 𝑌𝑀 ∩ 𝑌𝑁 ∩ 𝑌𝑃 = ∅, then 8: In case of graphings over a measured

space, the equality can be taken up to a
negligible subset.Ex(Ex(𝑀, 𝑁).𝑃) = Ex(𝑀, Ex(𝑁, 𝑃)).

Before discussing the trefoil / 2-cocycle property, I discuss two results
which are essential to define submodels.

Submodels

The following lemmas show that if one restrict to deterministic graphings,
the execution is well defined. As a consequence, the linear realisability
constructions considered in the next chapter can be performed on the set
of deterministic graphings, defining a proper submodel.

Lemma 9.2.2 The execution of two deterministic graphings is a deterministic
graphing.

It turns out that the notion of probabilistic graphing also behaves well
under composition, i.e. there exists a sub-probabilistic submodel, namely
the model of sub-probabilistic graphings. As explained below in the more
general case of Markov processes (Remark 9.2.2), probabilistic graphings
are not closed under composition.

Lemma 9.2.3 The execution of two sub-probabilistic graphings is a sub-
probabilistic graphing.
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Both lemmas are proved for measurable graphings in published work
[134], and the proof is easily adapted to other cases. [134]: Seiller (2022), Zeta functions and the

(linear) logic of Markov processes

Sub-Markov kernels

As a generalisation of the previous case, and based on the identification of
probabilistic graphings with discrete-image sub-Markov kernels (Propo-
sition 4.2.2), we can generalise the framework and define an execution
on (general) sub-Markov kernels [134]. The need to consider sub-Markov [134]: Seiller (2022), Zeta functions and the

(linear) logic of Markov processeskernels and not only Markov kernels is explained by technical reasons
we illustrate below (Remark 9.2.2).

Notations 9.2.4. In the following we write Id the identity kernel on X→ X,
i.e. the Dirac delta function Id(𝑥, ¤𝑥) = 𝛿(𝑥, ¤𝑥) s.t.

∫
𝐴

Id(𝑥, ¤𝑥) = 1 if 𝑥 ∈ 𝐴
and

∫
𝐴

Id(𝑥, ¤𝑥) = 0 otherwise.

We will now define the execution in a similar way as for the graph and
graphing cases above: one computes all alternating paths between two
objects. This computation can in fact be obtained in two steps: composing
the two objects, and then computing the set of all paths of the result. We
start by defining the latter operation, that computes paths of arbitrary
length.

Definition 9.2.1 (Iterated kernel) Let 𝜅 be a sub-Markov kernel on X × Y.
For 𝑘 > 1, we define the 𝑘-th iterated kernel:

𝜅(𝑘)(𝑥0 , ¤𝑥𝑘) =
∬
(𝑥1 ,...,𝑥𝑘−1)∈(X∩Y)𝑘−1

𝑘−1∏
𝑖=0

𝜅(𝑥𝑖 , ¤𝑥𝑖+1).

By convention, 𝜅(1) = 𝜅.

Definition 9.2.2 (Maximal paths – Execution kernel) Let 𝜅 be a sub-Markov
kernel on X×Y. We define the execution kernel of 𝜅 as the map (in the formula,
𝑥𝑛+1 is used as a notation for 𝑦):

tr(𝜅) : 𝑋\𝑌 × Y\X → [0, 1]
(𝑥, 𝑦) ↦→ ∑

𝑛⩾1 𝜅(𝑛)(𝑥, 𝑦).

Remark 9.2.2 One could wonder why this is not defined on the whole
space 𝑋 × Y . The restriction is needed to define a sub-Markov kernel,
something that can be understood on a very simple Markov chain:

𝑥 𝑦 𝑧

1 1

1

On this figure, the partial sums of 𝜅(𝑖)(𝑥, 𝑦) is a diverging series. This
example also shows why the resulting kernel could be a sub-Markov
kernel even when 𝜅 is a proper Markov kernel.

Lemma 9.2.5 If 𝜅 is a sub-Markov kernel, tr𝐴(𝜅) is well-defined and a sub-
Markov kernel.

Now, the execution kernel just defined is the main operation for defining
the execution of sub-Markov kernels.
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Definition 9.2.3 Given two sub-Markov kernels 𝜅 on X×X′ and 𝜅′ on Y×Y′,
we define their execution 𝜅 ::𝜅′ as the kernel tr(𝜅 • 𝜅′) where:

𝜅 • 𝜅′ = (𝜅 + IdY\X′) ◦ (𝜅′ + IdX′\Y)

The reader with notions from traced monoidal categories [132, 135, 136] [132]: Joyal et al. (1996), Traced monoidal
categories
[135]: Hasegawa (1997), Recursion from
Cyclic Sharing: Traced Monoidal Categories
and Models of Cyclic Lambda Calculi
[136]: Haghverdi et al. (2006), A categori-
cal model for the geometry of interaction

should not be surprised of this definition and the following properties9.

9: In fact, the execution kernel should
define a trace in the categorical sense.

Definition 9.2.4 Three sub-Markov kernels 𝜅 on X × X′, 𝜅′ on Y × Y′, and 𝜅′′

on Z × Z′ are said to be in general position10 when the following condition is

10: The reader will realise the terminol-
ogy is inspired from algebraic geometry,
but no formal connections should be ex-
pected.

met:
𝜇(X′ ∩ Y ∩ Z) = 𝜇(Y′ ∩ Z ∩ X) = 𝜇(Z′ ∩ X ∩ Y) = 0,

𝜇(X ∩ Y′ ∩ Z′) = 𝜇(Y ∩ Z′ ∩ X′) = 𝜇(Z ∩ X′ ∩ Y′) = 0.

Note that if X = X′, Y = Y′ and Z = Z′, the condition becomes𝜇(X∩Y∩Z) = 0,
which is the condition of application of the associativity of execution and of the
trefoil property in the graph case.

Lemma 9.2.6 Given three sub-Markov kernels 𝜅0 on X×X′, 𝜅1 on Y×Y′, and
𝜅2 on Z × Z′ in general position:

(𝜅0 ::𝜅1) ::𝜅2 = 𝜅0 ::(𝜅1 ::𝜅2).

Lemma 9.2.7 Given two sub-Markov kernels 𝜅 on X × X′ and 𝜅′ on Y × Y′
such that X ∩ Y = X′ ∩ Y′ = ∅:

𝜅 ::𝜅′ = 𝜅′ ::𝜅.

This establishes the existence of a well-defined associative (and symmet-
ric) execution, the first ingredient for constructing linear realisability
models.

9.3. Trefoil Properties

We will now discuss the trefoil property, which I now also call the 2-cocycle
property. This property relates a measurement of pairs of objects (graphs,
matrices, graphings, operators, etc.) and the execution just defined. It
states a sort of higher dimensional associativity, and is essential in the
construction of linear realisability models (chapter 10).

Definition 9.3.1 Let (𝑃, Ex) be a set 𝑃 together with an associative operation
Ex : 𝑃 × 𝑃 → 𝑃. A measurement J·, ·K𝑚 : 𝑃 × 𝑃 → Ω satisfies the trefoil (or
2-cocycle) property if:

JEx(𝐴, 𝐵), 𝐶K𝑚 + J𝐴, 𝐵K𝑚 = J𝐴, Ex(𝐵, 𝐶)K𝑚 + J𝐵, 𝐶K𝑚 .

Remark 9.3.1 When the measurement is symmetric, i.e. when J𝐴, 𝐵K𝑚 =

J𝐵, 𝐴K𝑚 , this implies the original version of the property[16]: [16]: Seiller (2016), Interaction graphs: Ad-
ditives

JEx(𝐴, 𝐵), 𝐶K𝑚 + J𝐴, 𝐵K𝑚 = JEx(𝐶, 𝐴), 𝐵K𝑚 + J𝐶, 𝐴K𝑚
= JEx(𝐵, 𝐶), 𝐴K𝑚 + J𝐵, 𝐶K𝑚 .
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This property was introduced when extending the Interaction graphs
construction to additive connectives of linear logic [16]. It was in particular [16]: Seiller (2016), Interaction graphs: Ad-

ditivesessential to define a quotient of the model that provided a solution to the
usual failure of the geometry of interaction interpretation of additives. It
turns out that it is in fact a generalisation of a property considered by
Girard under the name adjunction (because it is in some way a low level
equivalent of the duality (𝐴 ⊗ 𝐵⊥)⊥ = 𝐴 ⊸ 𝐵, implying the monoidal
closure of the corresponding categorical model of linear logic).

The introduction of the trefoil property also put into light the common
general structure behind the different geometry of interaction construc-
tions considered by Girard over the years. This will be explained later in
this section.

Graphs and matrices

The first work in which the trefoil property was introduced [16] was [16]: Seiller (2016), Interaction graphs: Ad-
ditiveswritten during my PhD and only concerned the case of graphs11. It was
11: In fact, it involved linear combina-
tions of graphs, but this aspect can be
overlooked here.

proved for the following measurement between graphs:

J𝐹, 𝐺K𝑚 =
∑

𝜋∈C(𝐹,𝐺)
𝑚(𝜔(𝜋)),

where the sum was taken over 1-circuits, that is cycles12 alternating 12: A cycle here is understood geomet-
rically, i.e. we do not consider a fixed
source vertex.

between 𝐹 and 𝐺 that are not a proper power of another cycle, and𝑚 was
an arbitrary map from circuits to R+. This is formalised in the following
definitions.

I realised later on that the notion behind the terminology 1-circuit was in
fact that of prime closed path, as considered when defining zeta functions
of graphs for instance. I will therefore adopt from now on this more
standard terminology.

Definition 9.3.2 Given a graph 𝐺, a closed path 𝜋 (called circuit in earlier
work [15]) of length len(𝜋) = 𝑘 is a path (𝑒𝑖)𝑘−1

𝑖=0 such that 𝑠𝐺(𝑒0) = 𝑡𝐺(𝑒𝑘−1) [15]: Seiller (2012), Interaction Graphs: Mul-
tiplicativesand considered up to cyclic permutations. A prime closed path (called 1-circuit

in ig) is a closed path which is not a proper power of a smaller closed path. We
denote by C(𝐺) the set of prime closed paths in 𝐺.

Definition 9.3.3 Given graphs 𝐹, 𝐺, an alternating closed path 𝜋 of length
len(𝜋) = 2𝑘 is a closed path (𝑒𝑖)0⩽𝑖⩽2𝑘−1 in 𝐹 ∪ 𝐺 such that for all 𝑖 ∈ Z/2𝑘Z,
𝑒𝑖 ∈ 𝐹 if and only if 𝑒𝑖+1 ∈ 𝐺. The set of prime alternating closed paths between
𝐹 and 𝐺 will be denoted C(𝐹, 𝐺).

Definition 9.3.4 Let 𝑚 be a map C→ R⩾0. For any two graphs 𝐹, 𝐺 we define
the measurement

J𝐹, 𝐺K𝑚 =
∑

𝜋∈C(𝐹,𝐺)
𝑚(𝜔𝐹□𝐺(𝜋)).

Now, I realised that any of these measurements satisfied the trefoil
property, based on a very simple geometric argument. Under some
mild hypothesis on the graphs, the trefoil property is obtained as a
consequence of a geometric identity [8, 16]. We can establish that when [8]: Seiller (2012), Logique dans le facteur

hyperfini : géometrie de l’interaction et com-
plexité
[16]: Seiller (2016), Interaction graphs: Ad-
ditives

𝑉𝐹 ∩ 𝑉𝐺 ∩ 𝑉𝐻 = ∅, there is weight-preserving bĳection between the
following sets of closed paths:

C(𝐹, Ex(𝐺, 𝐻)) ⊎ C(𝐺, 𝐻) ≡ C(𝐺, Ex(𝐻, 𝐹)) ⊎ C(𝐻, 𝐹). (9.2)
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When restricting to the case 𝑉𝐺 ∩ 𝑉𝐻 = ∅, Ex(𝐺, 𝐻) = 𝐺 + 𝐻 is a
disjoint union, and specific values of the measurement give the different
adjunctions considered by Girard over the years:

▶ if 𝑚(𝑥) = ∞, then this implies that 𝐹(𝐺 + 𝐻) is nilpotent if and
only if Ex(𝐹, 𝐻)𝐺 and 𝐹𝐻 are nilpotent (the adjunction used in the
first three geometry of interaction constructions [12, 137, 138]); [12]: Girard (1995), Geometry Of Interac-

tion III: Accommodating The Additives
[137]: Girard (1989), Geometry of Interac-
tion I: Interpretation of System F
[138]: Girard (1988), Geometry of Interac-
tion II: Deadlock-free Algorithms

▶ if 𝑚(𝑥) = 1, this implies that 𝐹(𝐺 + 𝐻) is cyclic if and only if
Ex(𝐹, 𝐻)𝐺 is cyclic when 𝐹𝐻 is nilpotent (the adjunction used in
multiplicatives [139], the prequel to geometry of interaction);

[139]: Girard (1987), Multiplicatives
▶ if 𝑚(𝑥) = − log(1 − 𝑥), I showed how the measurement provides

a combinatorial way to compute the determinant, recovering the
adjunction based on

−ldet(1 − 𝐹(𝐺 ⊕ 𝐻))) = −ldet(1 − Ex(𝐹, 𝐺)𝐻)) − ldet(1 − 𝐹𝐺)),

where ldet denotes the logarithm of the determinant, and which is
used in the geometry of interaction in the hyperfinite factor13 13: To be more precise, the latter uses

the equivalent expression in which ldet
denotes the logarithm of the Fuglede-
Kadison determinant [9], but the result
still holds [15].

In order to prove this last result, I relied on the following lemma [15].

[15]: Seiller (2012), Interaction Graphs: Mul-
tiplicatives

Lemma 9.3.1 Let 𝐴 be a square matrix such that ∥𝐴∥ ⩽ 1. Then, with the
convention that − log(0) = ∞,

− log(det(1 − 𝐴)) =
∞∑
𝑘=1

Tr(𝐴𝑘)
𝑘

.

I realised several years later that this result is a special case of the proof of
rationality of the zeta function of graph. This lead me to establish a new
measurement based on zeta functions presented below. However, before
detailing these, I explain how the results on graphs can be extended to
graphings.

Graphings cocycles

Now, the extension of the measurement to graphings will follow the
identification of graphings as generalised graphs. In the same way we
defined the execution of graphings by mimicking the execution of graphs,
we will here define a measurement based on 1-circuits. We however
encounter an issue, similar but more complex than that of splitting
explained above.

More precisely, we want to define the measurement as a sum over 1-
circuits, but those may behave in different ways with respect to ‘splitting’
edges, i.e. only accounting for cycles between two graphing representa-
tives 𝑀 and 𝑁 will not lead to a measurement invariant w.r.t. the full
equational theory. This is illustrated in Figure 9.2.

The solution is to take into account the action on the underlying space. In-
tuitively, one measures the cycles appearing in the underlying dynamical
system instead of the graph-like representation. In the example, a given
cycle becomes either one longer cycle or two disjoint cycles when splitting
the space. But the reason behind this difference can be found in the maps
realising the initial cycle. The measurement will thus split a ‘formal’ cycle,
i.e. a cycle in the graph structure of the graphing representative, into
several cycles depending on the length of the orbits.

Formally, I defined an abstract notion of circuit-quantifying map [17], i.e. a [17]: Seiller (2017), Interaction Graphs:
Graphings
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[0, 2] [3, 5]

𝑥 ↦→ 5 − 𝑥

𝑥 ↦→ 𝑥 − 3

[0, 1] [1, 2] [3, 4] [4, 5]

𝑥 ↦→ 5 − 𝑥
𝑥 ↦→ 5 − 𝑥

𝑥 ↦→ 𝑥 − 3

(a) A cycle doubling its length

[0, 2] [3, 5]

𝑥 ↦→ 𝑥 + 3

𝑥 ↦→ 𝑥 − 3

[0, 1] [1, 2] [3, 4] [4, 5]

𝑥 ↦→ 𝑥 − 3

𝑥 ↦→ 𝑥 + 3

(b) A cycle splitting in two cycles Figure 9.2.: Examples of the evolution of
a cycle when performing a refinement∑

𝜋=(𝑒𝑖 )𝑛𝑖=1∈Cy(𝐹,𝐺)
∑𝑛
𝑗=0

∫
supp(𝜋)

∑𝜌𝜙𝜋 (𝑥)−1
𝑘=0

𝑚(𝜔(𝜋)𝜌𝜙𝜋 (𝜙
𝑘
𝜋(𝑥)))

(𝑛+1)𝜌𝜙𝜋 (𝑥)𝜌𝜙𝜋 (𝜙𝑘𝜋(𝑥))
𝑑(𝜙𝑒𝑛 ◦ 𝜙𝑒𝑛−1 ◦ · · · ◦ 𝜙𝑒 𝑗 )∗𝜆(𝑥),

Figure 9.3.: Measurement for graphings

notion of measurement that behaves well with regards to the splitting
of cycles exemplified in Figure 9.2. I then defined a family of such maps
in the restricted case of bi-measurable transformations on a trefoil space.
More precisely, a trefoil space X is a second-countable Hausdorff space
equipped with a Borel 𝜎-algebra and a 𝜎-additive Radon measure. A
bimeasurable transformation on X is a measurable function 𝑓 : X→ X
such that 𝑓 maps open sets to open sets, and such that for all measurable
set 𝑂, 𝜇( 𝑓 −1(𝑂)) = 0 if and only if 𝜇(𝑂) = 0.

In this case, one can define the measurement shown in Figure 9.3.

where Cy(𝐹, 𝐺) is the set of prime cycles, supp(𝜋) is the subspace
on which the cycle is defined, 𝜌𝜙𝜋 (𝑥) is the map associating to 𝑥 ∈
supp(𝜋) the length (possibly infinite) of the corresponding orbit, and
𝑑𝜙∗𝜆 is the pushforward measure of 𝜆 along 𝜙. While this expression is
quite involved, it can be understood as computing a sum over all finite
closed orbits (this point of view will be presented when explaining the
connection with zeta functions later in this chapter).

This measurement can then be shown to satisfy the trefoil property [17,
Theorem 35].

Theorem 9.3.2 Let 𝐹, 𝐺, 𝐻 be graphings such that no point 𝑥 belongs to the
source of edges from all three graphings (i.e. 𝑉𝐹 ∩𝑉𝐺 ∩𝑉𝐻 = ∅ if one write
𝑉𝐴 the set 𝑥 ∈ X such that 𝑥 belongs to the domain of at least one edge of the
graphing 𝐴). Then:

J𝐹, Ex(𝐺, 𝐻)K𝑚 + J𝐺, 𝐻K𝑚 = JEx(𝐹, 𝐺), 𝐻K𝑚 + J𝐹, 𝐺K𝑚 .

Moreover, the measurement is symmetric, i.e. J𝐹, 𝐺K𝑚 = J𝐺, 𝐹K𝑚 .
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9.4. Zeta cocycles

Bowen-Lanford Zeta Functions

We first recall the definition and some properties of the zeta function of a
directed graph. We refer to the book of Terras [140] for more details. We [140]: Terras (2010), Zeta functions of

graphs: a stroll through the gardenwill later on continue with zeta functions for weighted directed graphs,
and further with zeta functions for dynamical systems. The graph case is
important as it provides intuitions about the later generalisations.

In this subsection only, we consider non-weighted directed graphs (i.e.
there is no weight map 𝜔𝐺 or, equivalently, this map is the constant
map equal to 1) and suppose they are simple, i.e. that the map 𝐸𝐺 ↦→
𝑉𝐺 ×𝑉𝐺; 𝑒 ↦→ (𝑠𝐺(𝑒), 𝑡𝐺(𝑒)) is injective. Given such a graph, its transition
matrix is defined as the 𝑉𝐺 ×𝑉𝐺 matrix whose coeficients are defined
by 𝑀𝐺(𝑣, 𝑣′) = 1 if there is an edge 𝑒 ∈ 𝐸𝐺 such that 𝑠𝐺(𝑒) = 𝑣 and
𝑡𝐺(𝑒) = 𝑣′, and 𝑀𝐺(𝑣, 𝑣′) = 0 otherwise. The following definition
provides a clear parallel with the famous Euler zeta function.

Definition 9.4.1 The Bowen-Lanford zeta function associated with the graph 𝐺
is defined as:

𝜁𝐺(𝑧) =
∏

𝜏∈C(𝐺)
(1 − 𝑧len(𝜏))−1

which converges provided |𝑧| is sufficiently small.

The two following lemmas are easy to establish (using the identity
log(1 − 𝑥) = ∑∞

𝑘=1
𝑥𝑛

𝑛 ). The first is essential in our work, as it provides
an alternative expression of the zeta function that we will be able to
generalise later. Indeed, while the formal definition above uses the notion
of prime closed paths, this one quantifies over all closed paths.

The second lemma is key to the representation of 𝜁𝐺(𝑧) as a rational
function. This relates the zeta function with the determinant of the
adjacency matrix of 𝐺.

Lemma 9.4.1 Let 𝑁(𝑛) denote the number of all possible strings (𝑣1 , . . . , 𝑣𝑛)
representing a closed path in 𝐺 of length 𝑛. Then 𝜁𝐺(𝑧) = exp

(∑∞
𝑖=1

𝑧𝑛

𝑛 𝑁(𝑛)
)
.

Lemma 9.4.2 Let 𝐺 be a graph and 𝑀(𝐺) its transition matrix, then
tr(𝑀(𝐺)𝑘) = 𝑁(𝑘).

The previous lemmas are standard results from the theory of Zeta
functions. Together, they yield the following result.

Proposition 9.4.3 Let 𝐺 be a graph, 𝑀(𝐺) its transition matrix:

log(𝜁𝐺(𝑧)) = − log(det(1 − 𝑧.𝑀(𝐺))),

for sufficiently small values of |𝑧|.

Zeta functions of weighted directed graphs

Now, we consider weighted directed graphs, i.e. graphs with weights of
the edges, and we will restrict to the case of complex numbers as weights.
We write 𝜔 the weight function, as well as its extension to paths, using
the product, i.e.

𝜔(𝜋) =
∏
𝑒∈𝜋

𝜔(𝑒).



9. The mathematical structure of abstract programs 161

Similarly to the case of unweighted graphs, we define the transition matrix
of a simple weighted graph as the𝑉𝐺 ×𝑉𝐺 matrix with 𝑀𝐺(𝑣, 𝑣′) = 𝜔(𝑒)
if there exists a (necessarily unique) edge 𝑒 ∈ 𝐸𝐺 with ⟨𝑠𝐺(𝑒), 𝑡𝐺(𝑒)⟩ =
(𝑣, 𝑣′), and 𝑀𝐺(𝑣, 𝑣′) = 0 otherwise.

For a general (i.e. non-simple) weighted graph 𝐺, we write 𝐺(𝑣, 𝑣′)
the set {𝑒 ∈ 𝐸𝐺 | 𝑠𝐺(𝑒) = 𝑣, 𝑡𝐺(𝑒) = 𝑣′}. One can then extend the
definition of transition matrix by associating to 𝐺 the 𝑉𝐺 × 𝑉𝐺 matrix
with 𝑀𝐺(𝑣, 𝑣′) =

∑
𝑒∈𝐺(𝑣,𝑣′) 𝜔(𝑒). Alternatively, this matrix can also be

defined as 𝑀𝐺̂ where 𝐺̂ is the simple collapse of 𝐺, i.e. the simple graph
defined as 𝐺̂ = (𝑉𝐺 , 𝐸̂𝐺 , 𝑠𝐺 , 𝑡𝐺 , 𝜔̂𝐺)with:

▶ 𝐸̂𝐺 = {(𝑣, 𝑣′) ∈ 𝑉𝐺 ×𝑉𝐺 | 𝐺(𝑣, 𝑣′) ≠ ∅},
▶ 𝑠𝐺((𝑣, 𝑣′)) = 𝑣,
▶ 𝑡𝐺((𝑣, 𝑣′)) = 𝑣′,
▶ 𝜔̂𝐺((𝑣, 𝑣′)) = ∑

𝑒∈𝐺(𝑣,𝑣′) 𝜔(𝑒).
Note that I proved in earlier work [15] that the measurement defined [15]: Seiller (2012), Interaction Graphs: Mul-

tiplicativesfrom the function 𝑚 := 𝜆𝑥. log(1 − 𝑥) satisfies J𝐹, 𝐺K𝑚 = J𝐹̂, 𝐺̂K𝑚 .

The zeta function of a weighted graph is defined as follows.

Definition 9.4.2 The zeta function associated with the weighted graph 𝐺 is
defined as:

𝜁𝐺(𝑧) =
∏

𝜋∈C(𝐺)
(1 − 𝜔(𝜋).𝑧)−1

which converges provided |𝑧| is sufficiently small.

Readers familiar with zeta functions of weighted graphs will notice that
we take the product of the weights to define the weight 𝜔 of a path, while
standard work on zeta functions for weighted graphs define the weight
𝜈 of a path as a sum. This is formally explained by taking a logarithm, i.e.
𝜔 = log ◦𝜈, leading to multiplying here expressions 1− 𝜔(𝜋)𝑧 instead of
1 − 𝑧𝜈(𝜋) in the standard definition.

Adapting the proof of the non-weighted case (Proposition 9.4.3), one
obtains the following general result, which extends the combinatorial
interpretation of the determinant det(1 −𝑀(𝐺))mentioned above.

Proposition 9.4.4 Let 𝐺 be a directed weighted graph, 𝑀(𝐺) its transition
matrix:

log(𝜁𝐺(𝑧)) = − log(det(1 − 𝑧.𝑀(𝐺))),
for sufficiently small values of |𝑧|.

Taking the logarithm we obtain:

log(𝜁𝐺(𝑧)) =
∑

𝜋∈C(𝐺)
− log(1 − 𝜔(𝜋).𝑧)),

an expression that appears in the definition of measurement in the
previous section. This can be used to relate the measurement defined
in interaction graphs for 𝑚 := 𝜆𝑥. log(1 − 𝑥) with the value of the zeta
function at 𝑧 = 1:

J𝐹, 𝐺K𝜆𝑥. log(1−𝑥) = log(𝜁𝐹•𝐺(1))

where the • operation consists in composing (i.e. taking length-2 paths)
the graphs 𝐹 + Id𝑉𝐹\𝑉𝐺 and 𝐺 + Id𝑉𝐺\𝑉𝐹 .
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Orthogonality in ig models is defined by 𝐹 ‹ 𝐺 as J𝐹, 𝐺K𝑚 ≠ 0,∞, i.e.
− log(𝜁𝐹•𝐺(1)) ≠ 0,∞. Through this previous result, this is equivalent to
the fact that 𝜁𝐹•𝐺(1) ≠ 0, 1. We will now build on this remark to extend
the construction of ig models. This provides a new family of models
using zeta functions to define the orthogonality.

Zeta, Execution and a Cocycle Property

The geometric identity (Equation 9.2) can be used to establish a general
cocycle condition satisfied by zeta functions.

Theorem 9.4.5 Suppose 𝑉𝐹 ∩𝑉𝐺 ∩𝑉𝐻 = ∅. Then:

𝜁𝐹•(𝐺 ::𝐻)(𝑧).𝜁𝐺•𝐻(𝑧) = 𝜁𝐺•(𝐻 :: 𝐹)(𝑧).𝜁𝐻•𝐹(𝑧). (9.3)

Using the fact we noticed earlier that J𝐹, 𝐺K𝜆𝑥. log(1−𝑥) = − log(𝜁𝐹•𝐺(1)),
we recover the trefoil property for graphs exposed in the previous section
(in the case of 𝑚(𝑥) = − log(1 − 𝑥)) by taking 𝑧 = 1.

Zeta Functions for dynamical systems

The Ruelle zeta function [22] is defined from a function 𝑓 : 𝑀 → 𝑀 [22]: Ruelle (1976), Zeta-functions for ex-
panding maps and Anosov flowswhere 𝑀 is a manifold and a function 𝜙 : 𝑀 → 𝔐𝑘 a matrix-valued

function. We write Fix(𝑔) the set of fixed points of 𝑔. Then the Ruelle
zeta function is defined as (we suppose that Fix( 𝑓 𝑘) is finite for all 𝑘):

𝜁 𝑓 ,Φ(𝑧) = exp

(∑
𝑚⩾1

𝑧𝑚

𝑚

∑
𝑥∈Fix( 𝑓 𝑚 )

tr

(
𝑚−1∏
𝑖=0

𝜙( 𝑓 𝑖(𝑥))
))
.

For 𝑑 = 1 and 𝜙 = 1 the constant function equal to 1, this is the Artin-
Mazur [141] zeta function: [141]: Artin et al. (1965), On periodic points

𝜁 𝑓 ,1(𝑧) = exp

(∑
𝑚⩾1

𝑧𝑚

𝑚
Card(Fix( 𝑓 𝑚))

)
.

Since we work with measured spaces, we consider the following measured
variant of Ruelle’s zeta function (defined for measure-preserving maps).
Suppose we work with a measured space (𝑀,B, 𝜇) and that Fix( 𝑓 𝑚) is
of finite measure:

𝜁 𝑓 ,Φ(𝑧) = exp

(∑
𝑚⩾1

𝑧𝑚

𝑚

∫
Fix( 𝑓 𝑚 )

tr

(
𝑚−1∏
𝑖=0

𝜙( 𝑓 𝑖(𝑥))
)
𝑑𝜇(𝑥)

)
For 𝑑 = 1 and 𝜙 = 1, this becomes:

𝜁 𝑓 ,1(𝑧) = exp

(∑
𝑚⩾1

∫
Fix( 𝑓 𝑚 )

𝑧𝑚

𝑚

)
which we relate to the measurement on graphings defined above in
Figure 9.3 in the case of non-singular measure-preserving maps (nsmp).
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Proposition 9.4.6 Given nsmp partial dynamical systems 𝑓 , 𝑔 : X→ X, for
all constant 𝑐 we have:

J 𝑓 , 𝑔K𝜆𝑥.𝑐 = log(𝜁𝑔◦ 𝑓 .1(𝑐)),

with J_, _K𝑚 the standard measurement on graphings [17]. [17]: Seiller (2017), Interaction Graphs:
Graphings

Proof. On one hand, we have

− log(𝜁𝑔◦ 𝑓 .1(1)) =
∑
𝑚⩾1

∫
Fix((𝑔◦ 𝑓 )𝑚 )

1
𝑚

∑
𝑚⩾1

𝜇(Fix((𝑔 ◦ 𝑓 )𝑚))
𝑚

.

On the other hand, the measurement J 𝑓 , 𝑔K𝑚 defined on general graph-
ings [17, Definitions 37 and 57] is given by the formula shown in Figure
9.3 in which 𝜌𝜙 is a measurable map associating to each point the length
of the orbit it belongs to [15, Corollary 45], Cy( 𝑓 , 𝑔) denotes the set
of prime closed paths alternating between 𝑓 and 𝑔, and generally ℎ∗𝜇
denotes the pullback measure of 𝜇 along ℎ.

This expression simplifies in the measure-preserving case [17, Proposition
52], and can be expressed as

J 𝑓 , 𝑔K𝑚 =
∑

𝜋=𝑒0 ...𝑒𝑛∈Cy( 𝑓 ,𝑔)

∫
supp(𝜋)

𝑚(𝜔(𝜋)𝜌𝜙𝜋 (𝑥))
𝜌𝜙𝜋 (𝑥)

Now, we can split this expression by considering the partition of supp(𝜋)
given by the preimage of 𝜌𝜙 . I.e. this partitions supp(𝜋) into (measurable)
subsets 𝑆𝜋

𝑖
= 𝜌−1

𝜙 (supp(𝜋)) containing the points 𝑥 ∈ supp(𝜋) such that
the orbit of 𝑥 is of length 𝑖.

As the value of 𝜌𝜙 is constant on these sets, this gives:

J 𝑓 , 𝑔K𝑚 =
∑

𝜋=𝑒0 ...𝑒𝑛∈Cy( 𝑓 ,𝑔)
∑∞
𝑖=0

∫
𝑆𝜋
𝑖

𝑚(𝜔(𝜋)𝑖 )
𝑖

Now, we are considering the case where 𝑚(𝑥) = 𝑧, and we know all
weights in the graphing are equal to 1. Hence:

J 𝑓 , 𝑔K𝑚 =
∑

𝜋∈Cy( 𝑓 ,𝑔)
∑∞
𝑖=0

∫
𝑆𝜋
𝑖

𝑧
𝑖 .

On the other hand, we have that, writing AltCycle( 𝑓 , 𝑔)𝑚 the set of all
alternating cycle between 𝑓 and 𝑔 of length 𝑚:

log(𝜁𝑔◦ 𝑓 ,1(𝑧)) =
∑
𝑚≥1

∫
Fix((𝑔◦ 𝑓 )𝑚 )

𝑧
𝑚

=
∑
𝑚≥1

∑
𝜋∈AltCycle(𝐹,𝐺)𝑚

∫
𝑆𝜋𝑚

𝑧
𝑚

since each fixpoint belongs to exactly one alternating cycle of length 𝑚
between 𝑓 and 𝑔 (because the graphings are deterministic).

Now each alternating cycle of length 𝑚 between 𝑓 and 𝑔 can be written
uniquely as a product of alternating prime cycles, we deduce:

log(𝜁𝑔◦ 𝑓 ,1(𝑧)) =
∑
𝑚≥1

∑
𝜋∈Cy( 𝑓 ,𝑔)

∫
𝑆𝜋𝑚

𝑧
𝑚

=
∑

𝜋∈Cy( 𝑓 ,𝑔)
∑
𝑚≥1

∫
𝑆𝜋𝑚

𝑧
𝑚

= J 𝑓 , 𝑔K𝑚

This is the equality we wanted to prove. R
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Zeta functions for sub-Markov processes

We now define the zeta function for sub-Markov kernels which I intro-
duced [134]; to my knowledge, this was not studied elsewhere. For this, [134]: Seiller (2022), Zeta functions and the

(linear) logic of Markov processeswe first define a map which we call the ‘zeta kernel’.

Definition 9.4.3 (Finite orbits – Zeta kernel) Let 𝜅 be a sub-Markov kernel
on X × Y. The zeta kernel, or kernel of finite orbits of 𝜅 is a kernel on X ×N –
where N denotes the set of natural numbers – defined as:

𝜁𝜅(𝑥0 , ¤𝑥0 , 𝑛) =
∬
(𝑥1 ,...,𝑥𝑛−1)∈(X∩Y)𝑛−1

∏
𝑖∈Z/𝑛Z

𝜅(𝑥𝑖 , ¤𝑥𝑖+1).

This expression computes the probability that a given point 𝑥0 lies in
an orbit of length 𝑛. It is a sub-Markov kernel for each fixed value of 𝑛,
but the sum over 𝑛 ∈ Z is not. The reason is simple: if a point 𝑥 lies in a
length 2 orbit with probability 1 (e.g. the point 𝑦 in the example Markov
chain in Remark 9.2.2), then it lies in a length 2𝑘 orbit with probability 1
as well. However, let us remark that the expression∫

𝑥∈𝑋∩𝑌
𝜁𝜅(𝑥, ¤𝑥, 𝑛)

plays the role of the set Fix( 𝑓 𝑛) that appears in dynamical and graph
zeta functions.

Definition 9.4.4 (Zeta function) We now define the Zeta function associated
with a sub-Markov kernel 𝜅 on X × Y:

𝜁𝜅(𝑧) : 𝑧 ↦→ exp

(
∞∑
𝑛=1

𝑧𝑛

𝑛

∫
𝑥∈X∩Y

𝜁𝜅(𝑥, ¤𝑥, 𝑛)
)

We can then establish the trefoil property. Following what was presented
in the first sections, we now define a zeta function associated to pairs of
general sub-Markov processes, and show it satisfies the required cocycle
property w.r.t. execution.

Definition 9.4.5 Given two kernels 𝜅, 𝜅′, we define their zeta-measurement
𝜁𝜅,𝜅′ as the function 𝜁𝜅•𝜅′(𝑧).

Proposition 9.4.7 (Cocycle) Given three sub-Markov kernels 𝜅 on X × X′, 𝜅′
on Y × Y′, and 𝜅′′ on Z × Z′ in general position:

𝜁𝜅,𝜅′(𝑧)𝜁𝜅 ::𝜅′ ,𝜅′′(𝑧) = 𝜁𝜅′ ::𝜅′′ ,𝜅(𝑧)𝜁𝜅′ ,𝜅′′(𝑧)

In the next chapter, we will explain how to construct linear realisability
models from a set of machines equipped with an associative execution
and a measurement satisfying the trefoil property. We will then explain
how all the above (and other) situations give rise to models of (fragments
of) linear logic.



Linear realisability 10.
In this chapter, we explain how the properties presented in the previous
chapter can be used to obtain models of linear logic. Linear logic is a
refinement of Intuitionistic and classical logic in which the implication
𝐴 ⇒ 𝐵 is decomposed as !𝐴 ⊸ 𝐵, where ⊸ is a linear implication
(using exactly once its argument) and ! a modality allowing to duplicate
a formula, i.e. allowing to deduce !𝐴 ⊗ !𝐴 from !𝐴.

One important aspect is that this decomposition provides a finer control
on the management of ‘resources’, i.e. what proof theory calls structural
rules. These rules usually translate trivial principles of logic, such as
weakening: if 𝐴 implies 𝐶, then 𝐴 ∧ 𝐵 imply 𝐶. Since linear logic allows
these rules only on formulas with the ! modality (or its dual ?), then some
basic properties of proof systems are no longer satisfied. In particular, two
non-equivalent conjunctions arise: one verifying that 𝐴⇒ 𝐶 and 𝐵⇒ 𝐶
implies that 𝐴 ∧ 𝐵 ⇒ 𝐶 – the additive conjunction & corresponding
categorically to a cartesian product – and the other satisfying that 𝐴⇒ 𝐶
and 𝐵⇒ 𝐷 implies 𝐴 ∧ 𝐵⇒ 𝐶 ∧ 𝐷 – the multiplicative conjunction ⊗
corresponding categorically to a (symmetric) monoidal product. While
the two conjunctions are equivalent in intuitionistic and classical logic,
through structural rules, they are no longer equivalent once one restricts
to linear implications. The modality !, which transforms the additive
conjunction into a multiplicative one since it satisfies !(𝐴 & 𝐵) � !𝐴 ⊗ !𝐵,
is called an exponential connective.

10.1. The general setting

The technique behind the construction of geometry of interaction, ludics,
interaction graphs, are based upon a general method. Here we abstract
away the mathematical underpinnings. All these constructions are based
upon a notion of abstract programs sharing the common structure
exposed in the previous chapter. We explain in a systematic and axiomatic
way now how this structure can be exploited to define linear realisability
models for second-order multiplicative additive linear logic (MALL). The
interpretation of larger fragments (namely exponentials of linear logic,
or variants of linear logic) requires some additional assumptions, and is
possible in specific models (most of them as it turns out).

Definition 10.1.1 A multiplicative linear realisability situation is a tuple
(𝑃, Ex, J·, ·K𝑚) where 𝑃 is a set, Ex : 𝑃 × 𝑃 → 𝑃 is an abstract notion of
execution, J·, ·K𝑚 : 𝑃 × 𝑃 → Θ is a measurement in a commutative group Θ,
such that:

▶ Associativity of execution:

Ex(Ex(𝑝1 , 𝑝2), 𝑝3) = Ex(𝑝1 , Ex(𝑝2 , 𝑝3)),

▶ Trefoil property / 2-cocycle:

JEx(𝑝1 , 𝑝2), 𝑝3K𝑚 + J𝑝1 , 𝑝2K𝑚 = J𝑝1 , Ex(𝑝2 , 𝑝3)K𝑚 + J𝑝2 , 𝑝3K𝑚 .
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Definition 10.1.2 A project 𝔭 is a pair (𝑎, 𝑝) where 𝑎 ∈ Θ and 𝑝 ∈ 𝑃. The
measurement is extended to projects in the following way:

J(𝑎, 𝑝), (𝑎, 𝑝′)K𝑚 = 𝑎 + 𝑎′ + J𝑝, 𝑝′K𝑚 .

The execution is extended to projects by:

Ex((𝑎, 𝑝), (𝑎, 𝑝′)) = (𝑎 + 𝑎′ + J𝑝, 𝑝′K𝑚 , Ex(𝑝, 𝑝′)).

Remark 10.1.1 While writing this document, as part of a collaboration
with Juan-Luis Gastaldi, Luc Pellissier and John Terrilla, I realised that
an alternative construction can be performed. Indeed, if one defines the
following extensions of measurement and execution:

J(𝑎, 𝑝), (𝑎, 𝑝′)K𝑚 = 𝑎 + 𝑎′ − J𝑝, 𝑝′K𝑚
Ex((𝑎, 𝑝), (𝑎, 𝑝′)) = (𝑎 + 𝑎′ − J𝑝, 𝑝′K𝑚 , Ex(𝑝, 𝑝′)),

then it can be shown that the results exposed later in this section hold:
these definitions give rise to a linear realisability model. This appeared
while studying the model obtained when considering a set of programs
𝑃 the strings over an alphabet Σ, equipped with concatenation for
execution and a well-chosen measurement depending on a corpus. In this
particular case, we believe that the notion of type can account for syntactic
(and maybe semantic) constructs of natural language, extending and
generalising preliminary investigation of Bradley, Gastaldi, and Terrilla
[142]. [142]: Bradley et al. (2024), The structure

of meaning in language
As a consequence of these definitions, the trefoil (or 2-cocycle) property
simplifies to a simple cyclic property. We note that commutativity of Θ is
essential in the following proof.

Proposition 10.1.1 Let 𝔭, 𝔮, 𝔯 be three projects. Then

JEx(𝔭, 𝔮), 𝔯K𝑚 = J𝔭, Ex(𝔮, 𝔯)K𝑚 .

Proof. This is simple calculation. We write 𝔭 = (𝑎, 𝑝), 𝔮 = (𝑏, 𝑞), 𝔯 = (𝑐, 𝑟).
Then:

JEx(𝔭, 𝔮), 𝔯K𝑚 = J(𝑎 + 𝑏 + J𝑝, 𝑞K𝑚 , Ex(𝑝, 𝑞)), (𝑐, 𝑟)K𝑚
= 𝑎 + 𝑏 + 𝑐 + J𝑝, 𝑞K𝑚 + JEx(𝑝, 𝑞), 𝑟K𝑚
= 𝑎 + 𝑏 + 𝑐 + J𝑞, 𝑟K𝑚 + J𝑝, Ex(𝑞, 𝑟)K𝑚
= J(𝑎, 𝑝), (𝑏 + 𝑐 + J𝑞, 𝑟K𝑚 , Ex(𝑞, 𝑟))K𝑚
= J𝔭, Ex(𝔮, 𝔯)K𝑚 .

R

Definition 10.1.3 (Antipode) An antipode is a subset ℵ of Θ.

Definition 10.1.4 Two projects 𝔭 and 𝔮 are orthogonal w.r.t. the antipode ℵ,
noted 𝔭 ‹ℵ 𝔮 when J𝔭, 𝔮K𝑚 ∈ ℵ.

Remark 10.1.2 In most constructions, this definition is coherent, though
weaker, than the definition of pole in classical realisability. Indeed, it is
true in general that the orthogonality can be equivalently defined by a
set of specific programs 𝑃ℵ as follows: 𝔭 ‹ℵ 𝔮 if and only if Ex(𝔭, 𝔮) ∈ 𝑃ℵ.
When this is the case, the set of pairs of programs such that 𝔭 ‹ℵ 𝔭′ is a
pole in the sense of Krivine: it is a set of "processes" (here: a program 𝔭

and a single-element stack 𝔭′) which is closed under anti-reduction1. 1: We do not go into details here, but the
reduction is a partial execution, i.e. exe-
cution w.r.t. a subset of the cut formulas.
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We now define the notion of type based on this orthogonality relation.
Again, this is close to Krivine’s definition in terms of truth values and
falsity values, but as an effect of linearity the stacks contain exactly one
term, leading to an identification of stacks and terms. This, together with
the fact that (in most cases) the notion of orthogonality is symmetric,
implies that we have a single notion of type accounting for both truth
and falsity values.

We note however that in the general framework, I have not explicitly
asked for symmetry. As a consequence, one should distinguish between
left- and right- types. This will not be detailed below, but all statements
can ba adapted to distinguish between those.

Definition 10.1.5 A type is a set A of projects such that A = 𝑇‹ for some set
of projects 𝑇. We will often refer to such a set 𝑇 (which is not unique in general)
as a set of tests for A.

Remark 10.1.3 A standard argument establishes that a set is a type if and
only if A = A‹‹.

While this is not detailed here, it is important to note that this notion of
types as descriptors differs in nature from the standard understanding
as types as constraints [60]. It is moreover related to work by Birkhoff on [60]: Joinet et al. (2021), From abstrac-

tion and indiscernibility to classification and
types: revisiting Hermann Weyl’s theory of
ideal elements

lattice theory, and the related notion of formal concepts introduced in
computer science by Wille [62], but extends those by taking into account

[62]: Wille (1982), Restructuring Lattice
Theory: An Approach Based on Hierarchies
of Concepts

the dynamic aspect of computation.

10.2. Multiplicative-Additive linear logic

Implicative Linear Logic

We note that in this general setting, we do not impose that J·, ·K𝑚 is
symmetric. While this is the case of all examples below, it turns out
the assumption is not needed. A non-symmetric measurement however
imposes a distinction between right and left types. As a consequence,
one would have to carefully distinguish between 𝐴‹‹, ‹(𝐴‹), (‹𝐴)‹,
and ‹‹𝐴. As mentioned above, we leave it to the reader to adapt the
statements in this general setting and state, for simplicity, the results
without making this distinction.

Definition 10.2.1 Given types A and B we define:

A ⊸ B = {𝔭 | ∀𝔞 ∈ A, Ex(𝔭, 𝔞) ∈ B},
A :: B = {Ex(𝔞, 𝔟) | ∀𝔞 ∈ A, ∀𝔟 ∈ B}‹‹.

Proposition 10.2.1 For all types A and B, the set A ⊸ B is a type, and:

A ⊸ B = (A :: B‹)‹.

Proof. Take 𝔭 ∈ (A :: B‹)‹. Since A‹‹‹ = A‹, this implies that 𝔭 ∈
{Ex(𝔞, 𝔟′) | ∀𝔞 ∈ A, ∀𝔟′ ∈ B‹}‹. Hence, for all 𝔞 ∈ A and all 𝔟′ ∈ B‹,
J𝔭, Ex(𝔞, 𝔟′)K𝑚 ∈ ‚. By the cyclic property:

J𝔭, Ex(𝔞, 𝔟′)K𝑚 ∈ ‚⇔ JEx(𝔭, 𝔞), 𝔟′K𝑚 ∈ ‚.

Hence Ex(𝔭, 𝔞) ‹ 𝔟′ for all 𝔞 ∈ A and all 𝔟′ ∈ B‹. I.e. 𝔭 ∈ A ⊸ B. R
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Additive conjunction

Defining additive connectives requires an extension of the framework in
which we assume that Θ is a semiring.

Definition 10.2.2 A general linear realisability situation is defined as a tuple
(𝑃, Ex, J·, ·K𝑚 ,111) where 𝑃 is a set, Ex : 𝑃 × 𝑃 → 𝑃 is an abstract notion
of execution, J·, ·K𝑚 : 𝑃 × 𝑃 → Θ is a measurement in a semiring Θ, and
111 : 𝑃 → Θ satisfies 111Ex(𝑝,𝑝′) = 111𝑝111𝑝′ , and such that:

▶ Associativity of execution:

Ex(Ex(𝑝1 , 𝑝2), 𝑝3) = Ex(𝑝1 , Ex(𝑝2 , 𝑝3)),

▶ Trefoil property / 2-cocycle:

JEx(𝑝1 , 𝑝2), 𝑝3K𝑚 + J𝑝1 , 𝑝2K𝑚111𝑝3 = J𝑝1 , Ex(𝑝2 , 𝑝3)K𝑚 +111𝑝1J𝑝2 , 𝑝3K𝑚 .

We can define a general linear realisability situation from any linear
realisability situation over a commutative2 semiring Θ as follows. In- 2: Commutativity of the product is re-

quired to obtain Lemma 10.2.4, but not
necessary to define non-reversible con-
nectives.

stead of simply considering elements of 𝑃, we work with formal linear
combinations of elements of 𝑃, i.e. in Θ[𝑃], the free Θ-module over 𝑃.
The execution and measurement extend to Θ[𝑃] by letting:

▶ ExΘ(∑𝑖 𝛼𝑖𝑝𝑖 ,
∑
𝑗 𝛽 𝑗𝑞 𝑗) =

∑
𝑖 , 𝑗 𝛼𝑖𝛽 𝑗Ex(𝑝𝑖 , 𝑞 𝑗),

▶ J
∑
𝑖 𝛼𝑖𝑝𝑖 ,

∑
𝑗 𝛽 𝑗𝑞 𝑗K

Θ
𝑚 =

∑
𝑖 , 𝑗 𝛼𝑖𝛽 𝑗J𝑝𝑖 , 𝑞 𝑗K𝑚 .

We define 111∑
𝑖 𝛼𝑖𝑝𝑖 =

∑
𝑖 𝛼𝑖 .

Lemma 10.2.2 If (𝑃, Ex, J·, ·K𝑚) is a multiplicative linear realisability situation,
the tuple (Θ[𝑃], ExΘ , J·, ·KΘ𝑚) is a general linear realisability situation.

Proof. We first check that the extended notion of execution is associative.

ExΘ(ExΘ(
∑
𝑖

𝛼𝑖𝑝𝑖 ,
∑
𝑗

𝛽 𝑗𝑞 𝑗),
∑
𝑘

𝛾𝑘𝑟𝑘)

= ExΘ(
∑
𝑖 , 𝑗

𝛼𝑖𝛽 𝑗Ex(𝑝𝑖 , 𝑞 𝑗),
∑
𝑘

𝛾𝑘𝑟𝑘)

=
∑
𝑖 , 𝑗 ,𝑘

𝛼𝑖𝛽 𝑗𝛾𝑘Ex(Ex(𝑝𝑖 , 𝑞 𝑗), 𝑟𝑘)

=
∑
𝑖 , 𝑗 ,𝑘

𝛼𝑖𝛽 𝑗𝛾𝑘Ex(𝑝𝑖 , Ex(𝑞 𝑗 , 𝑟𝑘))

= ExΘ(
∑
𝑖

𝛼𝑖𝑝𝑖 ,
∑
𝑗 ,𝑘

𝛽 𝑗𝛾𝑘Ex(𝑞 𝑗 , 𝑟𝑘))

= ExΘ(
∑
𝑖

𝛼𝑖𝑝𝑖 , ExΘ(
∑
𝑗

𝛽 𝑗𝑞 𝑗 ,
∑
𝑘

𝛾𝑘𝑟𝑘)).
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We then verify that the trefoil property holds.

JExΘ(
∑
𝑖

𝛼𝑖𝑝𝑖 ,
∑
𝑗

𝛽 𝑗𝑞 𝑗),
∑
𝑘

𝛾𝑘𝑟𝑘KΘ𝑚 + J
∑
𝑖

𝛼𝑖𝑝𝑖 ,
∑
𝑗

𝛽 𝑗𝑞 𝑗KΘ𝑚111𝛾

= J
∑
𝑖 , 𝑗

𝛼𝑖𝛽 𝑗Ex(𝑝𝑖 , 𝑞 𝑗),
∑
𝑘

𝛾𝑘𝑟𝑘KΘ𝑚 + (
∑
𝑖 , 𝑗

𝛼𝑖𝛽 𝑗J𝑝𝑖 , 𝑞 𝑗K𝑚)111𝛾

=
∑
𝑖 , 𝑗 ,𝑘

𝛼𝑖𝛽 𝑗𝛾𝑘(JEx(𝑝𝑖 , 𝑞 𝑗), 𝑟𝑘K𝑚 + J𝑝𝑖 , 𝑞 𝑗K𝑚)

=
∑
𝑖 , 𝑗 ,𝑘

𝛼𝑖𝛽 𝑗𝛾𝑘(J𝑝𝑖 , Ex(𝑞 𝑗 , 𝑟𝑘)K𝑚 + J𝑞 𝑗 , 𝑟𝑘K𝑚)

= J
∑
𝑖

𝛼𝑖𝑝𝑖 ,
∑
𝑗 ,𝑘

𝛽 𝑗𝛾𝑘Ex(𝑞 𝑗 , 𝑟𝑘)KΘ𝑚 + (
∑
𝑖

𝛼𝑖)(
∑
𝑗 ,𝑘

𝛽 𝑗𝛾𝑘J𝑞 𝑗 , 𝑟𝑘K𝑚)

= J
∑
𝑖

𝛼𝑖𝑝𝑖 , ExΘ(
∑
𝑗

𝛽 𝑗𝑞 𝑗 ,
∑
𝑘

𝛾𝑘𝑟𝑘)KΘ𝑚 + (
∑
𝑖

𝛼𝑖)J
∑
𝑗

𝛽 𝑗𝑞 𝑗 ,
∑
𝑘

𝛾𝑘𝑟𝑘)KΘ𝑚 .

R

We can now define additive projects following the constructions from
the previous section.

Definition 10.2.3 An additive project 𝔭 is a pair (𝑎,∑𝑖 𝛼𝑖𝑝𝑖) of an element of
Θ and an element of Θ[𝑃]. Execution and measurement are defined as follows
on additive projects:

Ex((𝑎,
∑
𝑖

𝛼𝑖𝑝𝑖), (𝑏,
∑
𝑗

𝛽 𝑗𝑞 𝑗))

= (𝑎111𝛽 + 111𝛼𝑏 +
∑
𝑖 , 𝑗

𝛼𝑖𝛽 𝑗J𝑝𝑖 , 𝑞 𝑗K𝑚 , Ex(
∑
𝑖

𝑝𝑖 ,
∑
𝑗

𝑞 𝑗)),

J(𝑎,
∑
𝑖

𝛼𝑖𝑝𝑖), (𝑏,
∑
𝑗

𝛽 𝑗𝑞 𝑗)K𝑚

= 𝑎111𝛽 + 111𝛼𝑏 +
∑
𝑖 , 𝑗

𝛼𝑖𝛽 𝑗J𝑝𝑖 , 𝑞 𝑗K𝑚 .

A consequence of these definitions is the cyclic property on additive
projects, generalising Proposition 10.1.1.

Proposition 10.2.3 Given three additive projects 𝔭, 𝔮, and 𝔯, we have:

JEx(𝔭, 𝔮), 𝔯K𝑚 = J𝔭, Ex(𝔮, 𝔯)K𝑚

This allows us to define the multiplicative connectives as above:

A ⊸ B = {𝔣 | ∀𝔞 ∈ A, Ex(𝔣, 𝔞) ∈ B},
A :: B = {Ex(𝔞, 𝔟) | 𝔞 ∈ A, 𝔟 ∈ B}‹‹ ,

and establish that A ⊸ B = (A ⊗ B‹)‹.

It is then possible to define new connectives based on the sum of additive
projects:

𝔭 + 𝔮 = (𝑎,
∑
𝑖

𝛼𝑖𝑝𝑖) + (𝑏,
∑
𝑗

𝛽 𝑗𝑞 𝑗) = (𝑎 + 𝑏,
∑
𝑖

𝛼𝑖𝑝𝑖 +
∑
𝑗

𝛽 𝑗𝑞 𝑗).

Note this is just the sum in Θ[𝑃].



10. Linear realisability 170

Definition 10.2.4 Given types A and B, one defines:

A & B = {𝔞 + 𝔟 | 𝔞 ∈ A, 𝔟 ∈ B}‹‹ ,
A ⊕ B = (A‹ & B‹)‹.

We can then establish the following lemma, which is the low-level formu-
lation of the universal property of the cartesian product.

Lemma 10.2.4
Ex(𝔣 + 𝔤, 𝔞) = Ex(𝔣, 𝔞) + Ex(𝔤, 𝔞)

Proof. Here again, the proof is a simple calculation.

Ex(𝔣 + 𝔤, 𝔞)
= Ex((𝑎 + 𝑏,

∑
𝑖

𝛼𝑖𝑝𝑖 +
∑
𝑗

𝛽 𝑗𝑞 𝑗), (𝑐,
∑
𝑘

𝛾𝑘𝑟𝑘))

=

(
(𝑎 + 𝑏)111𝛾 + (111𝛼 + 111𝛽)𝑐 + J

∑
𝑖

𝛼𝑖𝑝𝑖 +
∑
𝑗

𝛽 𝑗𝑞 𝑗 ,
∑
𝑘

𝛾𝑘𝑟𝑘K𝑚 ,

∑
𝑖 ,𝑘

𝛼𝑖𝛾𝑘Ex(𝑝𝑖 , 𝑟𝑘) +
∑
𝑗 ,𝑘

𝛽 𝑗𝛾𝑘Ex(𝑞 𝑗 , 𝑟𝑘)
)

=

(
𝑎111𝛾 + 𝑏111𝛾 + 111𝛼𝑐 + 111𝛽𝑐 + J

∑
𝑖

𝛼𝑖𝑝𝑖 ,
∑
𝑘

𝛾𝑘𝑟𝑘K𝑚 + J
∑
𝑗

𝛽 𝑗𝑞 𝑗 ,
∑
𝑘

𝛾𝑘𝑟𝑘K𝑚 ,

∑
𝑖 ,𝑘

𝛼𝑖𝛾𝑘Ex(𝑝𝑖 , 𝑟𝑘) +
∑
𝑗 ,𝑘

𝛽 𝑗𝛾𝑘Ex(𝑞 𝑗 , 𝑟𝑘)
)

=

(
𝑎111𝛾 + 111𝛼𝑐 + J

∑
𝑖

𝛼𝑖𝑝𝑖 ,
∑
𝑘

𝛾𝑘𝑟𝑘K𝑚 ,
∑
𝑖 ,𝑘

𝛼𝑖𝛾𝑘Ex(𝑝𝑖 , 𝑟𝑘)
)

+
(
𝑏111𝛾 + 111𝛽𝑐 + J

∑
𝑗

𝛽 𝑗𝑞 𝑗 ,
∑
𝑘

𝛾𝑘𝑟𝑘K𝑚 ,
∑
𝑗 ,𝑘

𝛽 𝑗𝛾𝑘Ex(𝑞 𝑗 , 𝑟𝑘)
)

= Ex(𝔣, 𝔞) + Ex(𝔤, 𝔞)

R

This lemma can now be used to establish the following theorem which
ensures that additive connectives are properly interpreted, i.e. that the
connective & satisfies the universal property of the cartesian product.

Theorem 10.2.5

(A ⊸ B)& (A ⊸ C) ⊆ A ⊸ (B & C)

Proof. Let 𝔣 ∈ A ⊸ B and 𝔤 ∈ A ⊸ C. For all 𝔞 ∈ A, by the previous
lemma, Ex(𝔣+𝔤, 𝔞) = Ex(𝔣, 𝔞)+Ex(𝔤, 𝔞). By definition of A ⊸ B, Ex(𝔣, 𝔞) =
𝔟 ∈ B. Similarly, Ex(𝔤, 𝔞) = 𝔠 ∈ C. Hence Ex(𝔣+ 𝔤, 𝔞) ∈ A + B for all 𝔞 ∈ A,
i.e. 𝔣 + 𝔤 ∈ A ⊸ (B & C), showing the inclusion. R
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Quantifiers

Lastly, on can easily define second-order connectives. This is one of the
main outcomes of this definition of types: second-order quantification,
and polymorphism, are obtained for free. Note however that interpreting
rules for second-order quantification requires some additional work
[17]. [17]: Seiller (2017), Interaction Graphs:

Graphings

Definition 10.2.5 Suppose given a family A(X) of types, indexed by the type X.
We define:

∀X A(X) =
⋂

X type
A(X)

∃X A(X) =
( ⋃

X type
A‹(X)

)‹

Exponentials

Lastly, exponential connectives can be defined in some constructions.
The underlying principle is that exponentials ensure the possibility of
duplicating formulas. As such, an exponential connective should con-
struct from a type A a new type !A such that the following contraction
principle is satisfied: !A ⊸ (!A ⊗ !A). Obviously, the meaning of the fol-
lowing principle is satisfied should be detailed: there should not only be
a program realising this type, but this program should be proof-like (in
the terminology of Krivine) or successful (in the terminology of game
semantics).

In the general framework of graphings, this can be ensured by mapping
abstract machines to stateless machines3 This is based on the following 3: This is the same notion of stateless as

discussed in Part 1. However, we here
consider that initial(𝑀) = terminal(𝑀),
which is simply another convention – al-
though less natural – as long as the ma-
chine 𝑀 possess an ‘output space’, i.e.
a subspace in which the output of the
computation is read.

observation: if 𝐴 has only one state, then after 𝐴 is run, it ends up in
its initial state. This ensures4 that there exists a natural implementation

4: This is not a necessary condition: the
construction in the paragraph hints at a
more general definition in which a ma-
chine is mapped to a cyclic machine, i.e.
a machine with ends its computation in
the state it started in.

of the contraction principle. Indeed, one can consider the machine that
takes a function 𝔞 ∈ A as input and uses it twice by doing the following:
it starts in a state 𝑠0 and applies 𝑎 while moving to a second state 𝑠1, and
then applies 𝑎 again from state 𝑠1. This works correctly if and only if
the second application of 𝑎 is ‘correct’ in the sense that its execution is
performed as if it was applied for the first time. If the machine 𝑎 ends up
after the first application in a state which is different from the initial state,
then the second application would not follow the right computation as it
would start from the end state of the first execution. But if 𝑎 terminates
in its initial state, it can be run again a second time.

Note that applying the contraction principle uses states. Moreover, there
are many ways to extract a stateless machine !𝑀 from a machine 𝑀: for
instance a naive approach would be to identify all states (which in general
produces a non-deterministic machine) or project onto one state, i.e.
removing anything that involves another state. While those define a notion
of exponential, they will not satisfy the other principles that are expected
from a proper interpretation of linear logic exponentials: functorial
promotion and weakening, and possibly5 digging and dereliction. 5: Those principles are not required to

model Elementary linear logic [143].
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10.3. Localised models

The models defined above do not possess low-level constructions corre-
sponding to non-reversible connectives, i.e. ⊗ and ⊕. This is corrected by
considering localised linear realisability models. As we will illustrate in the
next sections, all the cocycles presented in the previous chapter give rise
to localised models.

Multiplicatives

In the following, we write 𝐴 ⊻ 𝐵 the symmetric difference of 𝐴 and 𝐵.

Definition 10.3.1 (A localised linear realisability situation) A localised
(multiplicative) linear realisability situation is given by a boolean algebra B, and
a tuple (𝑃, 𝜙, Ex, J·, ·K𝑚) where 𝑃 is a set, 𝜙 is a map 𝑃 → B, the execution
satisfies6 Ex : 𝑃𝐴 × 𝑃𝐵 → 𝑃𝐴⊻𝐵 is an abstract notion of execution, and 6: We write here 𝑃𝐴 the fiber above 𝐴,

i.e. the subset 𝑃𝐴 of 𝑃 such that 𝑝 ∈ 𝑃𝐴
implies 𝜙(𝑝) ∈ 𝐴.

J·, ·K𝑚 : 𝑃 × 𝑃 → Θ is a measurement in a commutative group Θ, such that:

▶ (Associativity of execution) When defined,

Ex(Ex(𝑝1 , 𝑝2), 𝑝3) = Ex(𝑝1 , Ex(𝑝2 , 𝑝3)).

▶ (Trefoil – or 2-cocycle – Property) When defined:

JEx(𝑝1 , 𝑝2), 𝑝3K𝑚 + J𝑝1 , 𝑝2K𝑚 = J𝑝1 , Ex(𝑝2 , 𝑝3)K𝑚 + J𝑝2 , 𝑝3K𝑚 .

In this case, the above constructions can be followed by taking locations –
the element 𝜙(𝑝) ∈ B associated to a program 𝑝 – into account.

Definition 10.3.2 A localised project of support 𝐴 ∈ B is a pair 𝔭 = (𝑎, 𝑝)
where 𝑎 ∈ Θ and 𝑝 ∈ 𝑃𝐴.

Execution and measurement are then extended to localised project as
before:

Ex(𝑎, 𝑝), (𝑏, 𝑞)) = (𝑎1𝑞 + 1𝑝𝑏 + J𝑝, 𝑞K𝑚 , Ex(𝑝, 𝑞))
J(𝑎, 𝑝), (𝑏, 𝑞)K𝑚 = 𝑎1𝑞 + 1𝑝𝑏 + J𝑝, 𝑞K𝑚

Definition 10.3.3 Orthogonality is defined on fibers. I.e. the projets 𝔭 and 𝔭′

are orthogonal when they have the same support and J𝔭, 𝔭′K𝑚 ∈ ℵ.

Definition 10.3.4 A localised type of support 𝐴 ∈ B is a subset A of 𝑃𝐴 such
that there exists 𝑇 ⊂ 𝑃𝐴 satisfying A = 𝑇‹. Equivalently, A = A‹‹.

As above, we define the following two constructors on localised types:

A ⊸ B = {𝔭 | ∀𝔞 ∈ A, Ex(𝔭, 𝔞) ∈ B},
A :: B = {Ex(𝔞, 𝔟) | 𝔞 ∈ A, 𝔟 ∈ B}‹‹

We note that in this case, the definition of A ⊸ B requires that A and B
have disjoint locations since 𝜙(Ex(𝑝, 𝑎)) ∩ 𝜙(𝐴) = ∅. We will therefore
specialise the definition of A :: B to this particular case.

Definition 10.3.5 When𝐴∩𝐵 = ∅, we define the tensor product of 𝔭 of support
𝐴 and 𝔭′ of support 𝐵 as 𝔭⊗ 𝔭′ = Ex(𝔭, 𝔭′), and for types A and B of respective
supports 𝐴 and 𝐵, we define:

A ⊗ B = {𝔞 ⊗ 𝔟 | 𝔞 ∈ A, 𝔟 ∈ B}‹‹
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Note that A ⊗ B is a notation for the type A :: B when A,B have disjoint
supports. The following proposition is the equivalent of Proposition 10.2.1.
Its corollary is that localised types interpret multiplicative connectives
soundly.

Corollary 10.3.1 Let A,B be localised types of disjoint supports, then

A ⊸ B = (A ⊗ B‹)‹.

Additives

Following the previous sections, we extend the notion of linear realisabil-
ity situation to accommodate for additive connectives. We assume once
again that Θ is a semiring.

Definition 10.3.6 (A localised general linear realisability situation) A
localised general linear realisability situation is given by a boolean algebra B,
and a tuple (𝑃, 𝜙, Ex, J·, ·K𝑚 , 1) where:

▶ 𝑃 is a set,
▶ 𝜙 is a map 𝑃 → B,
▶ Ex is an abstract notion of execution verifying7 Ex : 𝑃𝐴 × 𝑃𝐵 → 𝑃𝐴⊻𝐵; 7: We write here 𝑃𝐴 the fiber above 𝐴,

i.e. the subset 𝑃𝐴 of 𝑃 such that 𝑝 ∈ 𝑃𝐴
implies 𝜙(𝑝) ∈ 𝐴.

▶ J·, ·K𝑚 : 𝑃 × 𝑃 → Θ is a measurement in a commutative group Θ;
▶ 1:𝑃 → Θ satisfies 1Ex(𝑝,𝑝′) = 1𝑝1𝑝′ ;

such that:

▶ (Associativity of execution) When defined,

Ex(Ex(𝑝1 , 𝑝2), 𝑝3) = Ex(𝑝1 , Ex(𝑝2 , 𝑝3)).

▶ (Trefoil – or 2-cocycle – Property) When defined:

JEx(𝑝1 , 𝑝2), 𝑝3K𝑚 + J𝑝1 , 𝑝2K𝑚 = J𝑝1 , Ex(𝑝2 , 𝑝3)K𝑚 + J𝑝2 , 𝑝3K𝑚 .

We can then define (localised) additive projects in the same way as above.
Following the non-localised construction, one can define a localised
general linear realisability situation from a multiplicative one by simply
considering formal combinations of programs on a given location. I.e.
from (𝑃, 𝜙, Ex, J·, ·K𝑚 , 1)we define (𝑃′, 𝜙′, ExΘ , J·, ·KΘ𝑚 , 1)where:

▶ 𝑃′ is defined as ∪𝐴∈BΘ[𝑃𝐴] is the set of formal linear combinations
of programs having the same location;

▶ 𝜙′ is defined as 𝜙′(𝑝) = 𝐴 for 𝑝 ∈ Θ[𝑃𝐴];
▶ ExΘ, J·, ·KΘ𝑚 , and 1 are defined as in the non-localised case.

We will now moreover suppose that:

▶ for all 𝐴 ∈ A there exists a program noted 0𝐴 such that

∀𝑝 ∈ 𝑃𝐴 , J0𝐴 , 𝑝K𝑚 = 0;

▶ for all 𝑝, 𝑝′ ∈ 𝑃𝐴 and 𝑞, 𝑞′ ∈ 𝑃𝐵 with 𝐴 ∩ 𝐵 = ∅,

JEx(𝑝, 𝑞), Ex(𝑝′, 𝑞′)K𝑚 = J𝑝, 𝑝′K𝑚 + J𝑞, 𝑞′K𝑚 .

We note that these properties are satisfied by the examples of linear
realisability situation presented in the previous chapter.

In that case, one can prove that there exists an interpretation of the
additive disjunction, i.e. the connective ⊕ dual to &, when restricting



10. Linear realisability 174

to a specific class of types called behaviours. In the following, we define
𝔬𝐴 = (0, 0𝐴) and 0𝐴 as the type {𝔬𝐴}‹‹.

Definition 10.3.7 A behaviour is a localised type A of support 𝐴 satisfying:

▶ for all 𝔞 ∈ A and all 𝜆 ∈ Θ, 𝔞 + 𝜆𝔬𝐴 ∈ A;
▶ for all 𝔞 ∈ A‹ and all 𝜆 ∈ Θ, 𝔞 + 𝜆𝔬𝐴 ∈ A‹.

We can then define on behaviours the following connectives, for localised
types A,B of respective disjoint supports 𝐴 and 𝐵:

A ⊸ B = {𝔭 | ∀𝔞 ∈ A, Ex(𝔭, 𝔞) ∈ B},
A :: B = {Ex(𝔞, 𝔟) | 𝔞 ∈ A, 𝔟 ∈ B}‹‹

A & B = {𝔞 ⊗ 𝔬𝐵 + 𝔬𝐴 ⊗ 𝔟 | 𝔞 ∈ A, 𝔟 ∈ B}‹‹ ,
A ⊕ B = ((A ⊗ 0𝐵) ∪ (0𝐴 ⊗ B))‹‹

We can check that the properties proven above still hold, and that for all
𝔞′ ∈ A, all 𝔞 ∈ A and all 𝔟 ∈ B of support 𝐵 disjoint from that of A:

J𝔞′ ⊗ 𝔬𝐵 , 𝔞 ⊗ 𝔬𝐵 + 𝔬𝐴 ⊗ 𝔟K𝑚
= J𝔞′ ⊗ 𝔬𝐵 , 𝔞 ⊗ 𝔬𝐵K𝑚 + J𝔞′ ⊗ 𝔬𝐵 , 𝔬𝐴 ⊗ 𝔟K𝑚
= J𝔞′, 𝔞K𝑚 + J𝔬𝐵 , 𝔬𝐵K𝑚 + J𝔞′, 𝔬𝐴K𝑚 + J𝔬𝐵 , 𝔟K𝑚
= J𝔞′, 𝔞K𝑚 .

As a consequence, we have the following theorem.

Theorem 10.3.2 Given behaviours A and B of disjoint supports,

A & B = (A‹ ⊕ B‹)‹.

Remark 10.3.1 The above results hold for general types and not only
behaviours. Behaviours are considered more generally in the context of
larger models including exponentials. They are at least important in that
they are are fully linear: one can show they do not satisfy the weakening
principle (something that can be true for certain types which are not
behaviours).

Localised quantifiers

The construction of second-order connectives can also be adapted. A
general intersection would define an empty set because of the constraints
on locations, and we therefore consider localised quantifiers.

Definition 10.3.8 Suppose given a family A(X) of types indexed by a type X of
support 𝑋. We define:

∀X A(X) =
⋂

X type of support 𝑋
A(X),

∃X A(X) =
( ⋃

X type of support 𝑋
A‹(X)

)‹
.
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10.4. Examples of linear realisability models

Graphs models

Graphs allow to define models of MALL. While second order quantifiers
can be formally defined at the level of types, finite graphs would not
allow for an adequate interpretation of second-order sequent calculus
rules. Indeed this would require some kind of rescaling to substitute any
formula with a type on a given location. Similarly, while some notion of
exponential may be considered, these require erasing some information
in the setting of finite graphs since graphs with an arbitrary large number
of states (hence an arbitrary large number of vertices) needs to be mapped
to graphs on a fixed, finite, number of vertices; the consequence is that
one could not expect some important rules – such as the (functorial)
promotion rule – to be interpreted correctly.

Allowing for infinite graphs solves these problems; one can then simply
translate the first geometry of interaction constructions.

Directed multigraphs. This model was the first I introduced, as part
of my PhD thesis. We fix a set of weights Ω. The boolean algebra is the
set of subsets of the natural numbers (for instance) 2N, and the set of
programs 𝑃𝐴 for 𝐴 ∈ 2N is the set of Ω-weighted directed multi-graph
(with countable set of edges) whose set of vertices is 𝐴. The measurement
is parametrised by a map 𝑚 : Ω→ R⩾0 and defined as

J𝐹, 𝐺K𝑚 =
∑

𝜋∈AltCycle(𝐹,𝐺)
𝑚(𝜋).

Together, we obtain the following theorem, based on the execution and
measurement defined on graphs in section 9.2 and section 9.3.

Theorem 10.4.1 For any monoid of weights Ω, any map 𝑚 : Ω→ R⩾0, and
any antipodeℵ ⊂ R⩾0, linear realisability constructions on directed multigraphs
define a model of Multiplicative Additive Linear Logic (MALL).

For specific values of Ω and 𝑚, the different GoI constructions of Girard
can be recovered as special cases of these models:

▶ if one takes 𝑚(𝑥) = 1 with the antipode {1}, orthogonality coin-
cides with the existence of a unique cycle between two graphs;
this generalises [16] the first geometry of interaction construction [16]: Seiller (2016), Interaction graphs: Ad-

ditives(sometimes called GoI0): multiplicatives [139];
[139]: Girard (1987), Multiplicatives▶ if one takes 𝑚(𝑥) = ∞ with the antipode {0} or R⩾0, then or-

thogonality coincides with nilpotency; the resulting model is a
combinatorial version of early models of geometry of interaction
[12, 137, 138]; [12]: Girard (1995), Geometry Of Interac-

tion III: Accommodating The Additives
[137]: Girard (1989), Geometry of Interac-
tion I: Interpretation of System F
[138]: Girard (1988), Geometry of Interac-
tion II: Deadlock-free Algorithms

▶ if one takes 𝑚(𝑥) = − log(1 − 𝑥) with the antipode R⩾0 \ {0}, then
orthogonality of 𝐹 and 𝐺 corresponds to the fact that det(1 −
𝑀𝐹𝑀𝐺) ≠ 0, 1 [15] (based on results presented in the previous

[15]: Seiller (2012), Interaction Graphs: Mul-
tiplicatives

chapter); the resulting model is a combinatorial version of the
geometry of interaction in the hyperfinite factor [6].

[6]: Girard (2011), Geometry of Interaction
V: Logic in the Hyperfinite Factor.
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Coherent graphs. This model is a variant of the directed multigraph
model above. It was initially introduced in my PhD thesis, as a way to work
with only finite graph. Indeed, in this construction the execution Ex(𝐹, 𝐺)
of two graphs is an infinite graph as soon as a cycle appears between
𝐹 and 𝐺. To avoid this while still allowing cycles (which are essential
for orthogonality, equivalently to account for correction), I introduced
elementary execution, i.e. computing execution as the set of elementary paths,
that is paths that do not use the same edge twice. The naive approach, i.e.
considering directed graphs with elementary execution and measuring
elementary cycles for defining orthogonality, does not work however. For
instance, Figure 10.1 shows a counterexample to the adjunction (a special
case of the trefoil cocycle in which on one side the graphs do not share
vertices): in Figure 10.1a one can count only two elementary cycles: 𝑑𝑒𝑎𝑔
and 𝑐𝑒𝑏 𝑓 , but in Figure 10.1b there are now three elementary cycles: 𝑑𝑒𝑎𝑔,
𝑐𝑒𝑏 𝑓 , and 𝑑𝑒𝑏 𝑓 𝑐𝑒𝑎𝑔. This mismatch comes from the fact that the paths
𝑑𝑒𝑏 and 𝑐𝑒𝑎 both use the edge 𝑒 and therefore should not be both used
in an elementary cycle. One therefore has to bookkeep some information
to avoid using twice an edge once execution is performed. The technical
solution is to define a symmetric relation on the set of edges keeping
track of coherent edges, i.e. edges that can be used in the same path. More
precisely, if 𝐹, 𝐺 are graphs endowed with symmetric binary relations
¨𝐹 and ¨𝐺 on 𝐸𝐹 and 𝐸𝐺 respectively, then one endows Ex(𝐹, 𝐺)with
the symmetric binary relation:

𝑒1𝑒2 . . . 𝑒𝑛 ¨Ex(𝐹,𝐺) 𝑓1 𝑓2 . . . 𝑓𝑚 ⇔ ∀𝑖 ∈ [1, 𝑛], ∀𝑗 ∈ [1, 𝑚], 𝑒𝑖 ¨ 𝑓𝑗 ,

where 𝑎 ¨ 𝑏 on the right-hand side is identified with ¨𝐹 (resp. ¨𝐺)
whenever 𝑎 and 𝑏 both belong to 𝐹 (resp. to 𝐺), and true in other cases.
If one defines this relation to be anti-reflexive, then coherent paths are
elementary; moreover anti-reflexivity is preserved by execution. It is
then possible to measure only coherent paths, i.e. we define for any map
𝑚 : Ω→ R⩾0:

J𝐹, 𝐺K𝑚̈ =
∑

𝜋∈Cy¨(𝐹,𝐺)
𝑚(𝜋),

and we get the following theorem.

Theorem 10.4.2 For any monoid of weights Ω, any map 𝑚 : Ω→ R⩾0, and
any antipode ℵ ⊂ R⩾0, linear realisability constructions on coherent graphs,
endowed with coherent execution and measuring coherent cycles, defines a model
of Multiplicative Additive Linear Logic (MALL).

One of these models was further studied with Lê Thành Dũng Nguyen
[30], in particular from the perspective of the correspondance between [30]: Nguyên et al. (2018), Coherent Inter-

action Graphsproof nets and co-graphs established by Rétoré [144].
[144]: Retoré (2003), Handsome proof-nets:
perfect matchings and cographs

Simple paths. This model was introduced together with the coherent
graphs version, and considers simple paths rather than elementary paths,
that is paths that do not go through the same vertex twice. As in the
case of coherent graphs, the naive approach fails, and one can easily
find a counterexample to the adjunction / trefoil cocycle as illustrated in
Figure 10.2: here in Figure 10.2a there are no alternating simple paths,
while in Figure 10.2b there exists one. Once again, the mismatch comes
from the fact that execution forgets about some information, namely that
two edges come from paths going through the same vertex. Following
what was done for elementary paths, the solution is the introduction of a
coherence relation on edges; the difference being in how the coherence
in the execution Ex(𝐺, 𝐻) is defined from the coherences8 in 𝐺 and 𝐻. 8: This definition is less natural and

pleasing than in the coherent graphs case,
since the definition implies some reason-
ing on the vertices visited by a path.
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(a) Cycles between 𝐹 and Ex(𝐺, 𝐻)

3 4 5 6
𝑐𝑒𝑏 𝑐𝑒𝑎

𝑑𝑒𝑏

𝑑𝑒𝑎

𝑓 𝑔

H

Ex(𝐹, 𝐺)

(b) Cycles between Ex(𝐹, 𝐺) and 𝐻 Figure 10.1.: Counter-example of the ad-
junction for elementary paths and cycles

Here, if 𝐹, 𝐺 are graphs endowed with symmetric binary relations, then
one endows Ex(𝐹, 𝐺)with the symmetric binary relation defined by: two
paths are coherent if and only if they are composed of pairwise coherent
edges (as in the case of elementary paths) and their sets of inner vertices
(i.e. vertices visited, except the source and target) are disjoint. From this
notion of simple execution, and measuring simple coherent cycles, one
gets the following theorem.

Theorem 10.4.3 For any monoid of weights Ω, any map 𝑚 : Ω→ R⩾0, and
any antipode ℵ ⊂ R⩾0, linear realisability constructions on coherent graphs,
endowed with simple execution and the measurement of simple cycles, defines a
model of Multiplicative Additive Linear Logic (MALL).

These models were not studied further.

Remark 10.4.1 The introduction of the coherence relation on edges was
never pushed to the more general setting of graphings. It should, however,
generalise properly and extend the models mentioned in this section
to larger fragments of linear logic (i.e. interpreting properly quantifiers
and/or exponentials).

Directed multigraphs: the zeta construction. The last construction
based on graphs is to consider the zeta cocycle for graphs presented
in section 9.4. This leads to the definition of a new family of models
of MALL (and more if one allows for infinite graphs). While I did not
study these models in details, one can note that a special case of the zeta
measurement corresponds to taking the Euler characteristic; indeed, the
Euler characteristic of a graph appears as an analytical property of its
Zeta function9. 9: The Ihara determinant formula es-

tablishes that 𝜁𝐺(𝑧)−1 = det(1 − 𝑧𝐴 +
𝑧2𝑄)(1−𝑢2)−𝜒 , where𝐴 is the adjacency
matrix, 𝑄 + 1 the valency matric, and 𝜒
the Euler characteristic of 𝐺.
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(b) Cycles between Ex(𝐹, 𝐺) and 𝐻
Figure 10.2.: Counterexample to the ad-
junction for simple paths and cycles

Theorem 10.4.4 For any monoid of weights Ω, any map 𝑚 : Ω → R⩾0,
and any antipode ℵ ⊂ C→ C, linear realisability constructions on directed
multigraphs, endowed with execution and the zeta measurement, defines a model
of Multiplicative Additive Linear Logic (MALL).

Graphings models

Graphings models generalise the graph models above, both the initial case
of measuring one-cycles and the construction based on zeta cocycles. The
consideration of graphings, and in particular graphings induced by an
action on the real numbers allowing for rescaling, allowed me to prove that
one can properly interpret second order quantifiers [17]. It was shown [17]: Seiller (2017), Interaction Graphs:

Graphingsin another work [13] that one can interpret Elementary Linear Logic
[13]: Seiller (2019), Interaction Graphs: Ex-
ponentials

[143], a variant of linear logic which characterises [145] the complexity

[143]: Girard (1995), Light Linear Logic
[145]: Danos et al. (2003), Linear logic and
elementary time

class Elementary of elementary functions [146]. Lastly, I showed [29]

[146]: Kalmar (1943), Egyszerii pelda eldon-
thetetlen aritmetikai problemara
[29]: Seiller (2016), Interaction Graphs: Full
Linear Logic

that allowing for continuous sets of states, i.e. sets of states isomorphic
to the real interval [0, 1] can lead to a model of standard exponential
connectives. While, as mentioned above, standard exponentials can also
be interpreted in infinite discrete graphs, the approach is much different
here and, to my knowledge, do not correspond to previously considered
interpretations of exponential connectives (in geometry of interaction or
game semantics).

Submodels

One can then check that the interpretations of proofs by graphings in
the above models are all deterministic. As a corollary of Lemma 9.2.2,
this implies that the above models can be restricted to deterministic
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graphs and graphings. In particular, one obtains models of linear logic by
realisability constructions on the set of all partial measured dynamical
systems whose graph is included in P(𝛼), based on the identification of
graphings with dynamical systems [134], whose orthogonality is defined [134]: Seiller (2022), Zeta functions and the

(linear) logic of Markov processesbased on Ruelle zeta functions.

Similarly, Lemma 9.2.3 shows that the above constructions yield sub-
probabilistic submodels. In particular, the probabilistic submodel of
graphings corresponds to a linear realisability construction on discrete-
image sub-Markov processes.

Markov processes

We build on the execution and the zeta function cocycle on sub-Markov
processes defined in section 9.2 and section 9.4.

Here abstract programs are defined as pairs of two measured spaces
written as X→ Y, together with a sub-Markov kernel 𝜅 from X to Y, that
is a kernel (X · [0, 1]) × (Y · [0, 1]) → [0, 1], where · denotes a product
that will be treated in specific manner when defining the execution and
orthogonality.

We need to define an operation corresponding to extending the kernels
to (X · [0, 1] × [0, 1]) × (Y · [0, 1] × [0, 1]) → [0, 1]. This can be done in
two different ways: extending by the identity on the first copy of [0, 1],
or extending by the identity on the second copy of [0, 1]:

𝜅† : ((𝑥, 𝑒 , 𝑓 ), ( ¤𝑥, ¤𝑦, ¤𝑓 )) ↦→ 𝜅((𝑥, 𝑒), ( ¤𝑥, ¤𝑒))1( 𝑓 , ¤𝑓 )
𝜅‡ : ((𝑥, 𝑒 , 𝑓 ), ( ¤𝑥, ¤𝑦, ¤𝑓 )) ↦→ 𝜅((𝑥, 𝑓 ), ( ¤𝑥, ¤𝑓 ))1(𝑒 , ¤𝑒).

Given two abstract objects (X→ Y, 𝜅1) and (X′→ Y′, 𝜅2), we define the
execution as the abstract program(

(X ∪ X′) \ (Y ∪ Y′) → (Y ∪ Y′) \ (X ∪ X′), Ex(𝜅†1 • 𝜅
‡
2

)
,

which is then written as a kernel (X · [0, 1]) × (Y · [0, 1]) → [0, 1] through
a fixed map [0, 1]2 → [0, 1].
The measurement is then defined using the zeta function:

J𝜅1 , 𝜅2K𝑚 = 𝜁
𝜅†1•𝜅

‡
2
(𝑧).

This defines a localised general linear realisability situation, which can
be shown to model second-order linear logic [134]. [134]: Seiller (2022), Zeta functions and the

(linear) logic of Markov processes

von Neumann algebras

Hyperfinite GoI (5.0). This is the first iteration of the ‘hyperfinite
geoemtry of interaction’. The construction does not appear in any pub-
lished work (although it is somehow sketched in my work about the
classification of maximal abelian sub-algebras [10] detailed in chapter 11). [10]: Seiller (2018), A Correspondence be-

tween Maximal Abelian Sub-Algebras and
Linear Logic Fragments

Some background material about von Neumann algebras can be found
in the appendix.

Here one works within the hyperfinite factor ℜ0,1 of type II∞. An abstract
program is defined by a tuple (𝑝,𝔄, 𝛼, 𝐴) where 𝑝 ∈ ℜ0,1 is a finite
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projection, 𝔄 is a finite von Neumann algebra of type I, 𝐴 is a self-adjoint
operator of norm at most 1 in 𝑝ℜ0,1𝑝 ⊗ 𝔄 – equivalently an operator
𝐴 ∈ ℜ0,1 ⊗ 𝔄 such that 𝐴 = 𝑝𝐴𝑝 –, and 𝛼 is a pseudo-trace on 𝔄, that is a
a hermitian (𝛼(𝑢) = 𝛼(𝑢∗)), tracial (𝛼(𝑢𝑣) = 𝛼(𝑣𝑢)), faithful and normal
(i.e. 𝜎-weakly continuous) linear form.

Remark 10.4.2 This seems quite abstract, but the von Neumann algebra
𝔄 can always be written as a direct sum of matrix algebras, i.e.

𝔄 =

𝑘⊕
𝑖=1

𝔐𝑛𝑖 (C),

and the pseudo-trace corresponds to a real linear combination of the
normalised10 traces on each 𝔐𝑛𝑖 , i.e. there exists real numbers 𝜆1 , . . . ,𝜆𝑘 10: Recall that the normalised trace is

the usual trace of the matrix divided by
the dimension of the underlying Hilbert
space, so that the trace of the identity
equals 1.

such that:

𝛼(
𝑘⊕
𝑖=1

𝑎𝑖) =
𝑘∑
𝑖=1

𝜆𝑖tr(𝑎𝑖).

This will be used to factor the construction through a multiplicative
localised linear realisability situation.

The execution between two abstract programs (𝑝,𝔄, 𝛼, 𝐴) and (𝑞,𝔅, 𝛽, 𝐵)
is defined as the solution to the feedback equation (Equation 9.1) involving
𝐴† and 𝐵‡ which are the operators on ℜ0,1 ⊗ 𝔄 ⊗ 𝔅, i.e. writing 𝜏 the
operator 𝔅⊗𝔄→ 𝔄⊗𝔅 defined from 𝑏⊗ 𝑎 ↦→ 𝑎⊗ 𝑏 on simple tensors:

𝐴† = 𝐴 ⊗ 1𝔅
𝐵‡ = (1ℜ0,1 ⊗ 𝜏)(𝐵 ⊗ 1𝔄).

The result of the execution is then the abstract program (𝑝∩ 𝑞,𝔄⊗𝔅, 𝛼⊗
𝛽, Ex(𝐴† , 𝐵‡)).
The measurement is then defined as follows. First, define

ldet𝛼(1 − 𝐴) =
∞∑
𝑖=1

trℜ0,1 ⊗ 𝛼(𝐴𝑘)
𝑘

,

which produces from an abstract program a real number. Then the
measurement between abstract programs is defined as:

J(𝑝,𝔄, 𝛼, 𝐴), (𝑞,𝔅, 𝛽, 𝐵)K𝑚 = ldet𝛼⊗𝛽(1 − 𝐴†𝐵‡).

Note the expression is named ldet since it can be related to the logarithm
of the (Fuglede-Kadison) determinant.

Now, following Remark 10.4.2, we can define the following localised mul-
tiplicative linear realisability situation and understand abstract programs
as real linear combinations of elements of this underlying multiplicative
setting. The notion of abstract program is here a tuple (𝑝, 𝑎, 𝐴) where
𝑝 ∈ ℜ0,1 is a finite projection, 𝑎 ∈ Z∗ is a non-zero natural number, and
𝐴 is a self-adjoint operator in 𝑝ℜ0,1𝑝 ⊗𝔐𝑎(C). Here again the execution
is defined as the solution of the feedback equation involving 𝐴† and 𝐵‡,
and the measurement is defined as above using the normalised trace on
𝔐𝑎(C):

J(𝑝, 𝑎, 𝐴), (𝑞, 𝑏, 𝐵)K𝑚 = ldettr⊗tr(1 − 𝐴†𝐵‡).
Girard’s construction then picked the specific antipode ℵ = R∗⩾0 of
non-zero positive reals.



10. Linear realisability 181

This factoring of the general setting was essential in my early work
showing how interaction graphs can provide a combinatorial version
of the hyperfinite geometry of interaction. This construction provides a
model of multiplicative and additive connectives following the abstract
constructions above, as well as constrained exponential connectives from
Elementary Linear Logic [143, 145]. [143]: Girard (1995), Light Linear Logic

[145]: Danos et al. (2003), Linear logic and
elementary time

Hyperfinite GoI (5.1). The hyperfinite geometry of interaction in its offi-
cial (published) form [6] makes use of the Fuglede-Kadison determinant [6]: Girard (2011), Geometry of Interaction

V: Logic in the Hyperfinite Factor.[9] instead of the expression ldet considered previously. I.e. the abstract
[9]: Fuglede et al. (1952), Determinant the-
ory in finite factors

programs are defined in the same way, the execution is defined similarly,
but the measurement is defined using − log(detfk(1 − 𝐴)) instead of the
infinite series ldet(1 − 𝐴) used above.

This provides a model of Elementary Linear logic (including additives),
as for the GoI0 construction above. While this difference does not impact
much the constructions, they lead to an important change in the definition
of successful projects, which are understood as the interpretations of
proofs. This is explained in chapter 11.

Ludics, transcendental syntax, nets

Some alternative models of linear logic are constructed based on bi-
orthogonality methods, namely Ludics [147, 148] and the more recent [147]: Girard (2001), Locus solum: From the

rules of logic to the logic of rules
[148]: Terui (2011), Computational ludics

transcendental syntax [33, 149]. Those are more directly based on a syntactic

[33]: Eng et al. (2022), Multiplicative linear
logic from a resolution-based tile system
[149]: Girard (2017), Transcendental syntax
I: deterministic case

notion of abstract programs.

In both cases, the model can be understood as a linear realisability situa-
tion of a particular kind. In these models, one starts from a set of abstract
programs 𝑃 and a notion of execution Ex which is associative, and defines
orthogonality directly by saying that two programs 𝑝, 𝑞 are orthogonal
whenever Ex(𝑝, 𝑎) leads to a normal form (hence the computation – or
cut-elimination procedure – terminates). Indeed, the execution Ex(𝑝, 𝑞)
may be undefined in these models. The setting then corresponds to defin-
ing the following measurement J𝑝, 𝑞K𝑚 = 0 when Ex(𝑝, 𝑞) is defined,
and J𝑝, 𝑞K𝑚 = ∞ otherwise. The trefoil property is then

JEx(𝑝, 𝑞), 𝑟K𝑚 + J𝑝, 𝑞K𝑚 = J𝑝, Ex(𝑞, 𝑟)K𝑚 + J𝑞, 𝑟K𝑚 ,

and states that if Ex𝑝, 𝑞 and Ex(Ex(𝑝, 𝑞), 𝑟) are well-defined if and only if
Ex(𝑞, 𝑟) and Ex(𝑝, Ex(𝑞, 𝑟)) are well-defined: this is in fact the associativity
of execution.

In this specific setting, one does not requires to define projects; they would
be of the form (0, 𝑝) or (∞, 𝑝) but defining execution partially avoids the
need for (∞, 𝑝) elements.

I took a similar approach with Adrien Ragot and Lorenzo Tortora de
Falco recently [31, 32] to define a linear realisability model directly on [31]: Ragot et al. (2023), Linear Realisability

Over Nets and Second Order Quantification
(short paper)
[32]: Ragot et al. (2024), Linear realisability
on untyped nets

an abstract notion of nets, a generalised and untyped version of linear
logic’s proof nets.



Semantic complexity 11.
11.1. von Neumann algebras and expressivity

One of my own favorite results is published under the name "A Corre-
spondence between Maximal Abelian Sub-Algebras and Linear Logic
Fragments". While it has been published much later, it is in fact the first
result of my PhD. At the time, I observed that the result exposed below
held in the setting of the geometry of interaction in the hyperfinite factor.
This work, done during the summer, hit a rock when I realised that Girard
had changed the constructions of the latter during that same period of
time. It then took me some time to adapt the results and write them
properly: the results are more natural in the setting of GoI 5.0 (described
above and in one of my papers [10], but never published by Girard) but [10]: Seiller (2018), A Correspondence be-

tween Maximal Abelian Sub-Algebras and
Linear Logic Fragments

can be expressed in GoI5.1 with some additional work.

This result exhibits a remarkable correspondence between a classification
of maximal abelian sub-algebras and fragments of linear logic. The
maximal abelian sub-algebras arise naturally when one wishes to define
the notion of successful projects, i.e. projects that are the interpretations of
proofs. Since these definitions and the main theorem require a number
of definitions and results about maximal sub-algebras, we will present
below some results to provide a minimal background together with a
number of intuitions that should help the reader to grasp some subtleties
of the theory. After defining what exactly is a maximal abelian sub-
algebra, we will start by explaining the classification of such in type I
factors, the simpler case. We will then go on with the case of type II
algebras which is more involved. Note that an appendix also covers some
background on von Neumann algebras.

Truth and successful projects

The following definition should be clear from the discussion in chapter 10
on operator algebra models.

Definition 11.1.1 A hyperfinite project is a tuple 𝔞 = (𝑝, 𝑎,𝔄, 𝛼, 𝐴), where:

▶ 𝑝 is a finite projection in ℜ0,1, the carrier of 𝔞 ;
▶ 𝑎 ∈ R ∪ {∞} is called the wager of 𝔞;
▶ 𝔄 is a finite von Neumann algebra of type I, the dialect of 𝔞;
▶ 𝛼 is a pseudo-trace on 𝔄;
▶ 𝐴 ∈ 𝑝ℜ0,1𝑝 ⊗ 𝔄 is a hermitian operator of norm at most 1.

Using Girard’s notation, we will write 𝔞 = 𝑎 · + · 𝛼 + 𝐴. When the dialect is
equal to C, we will denote by 1C the ‘trace’ 𝑥 ↦→ 𝑥.

We first recall the notion of truth considered by Girard [6] which is [6]: Girard (2011), Geometry of Interaction
V: Logic in the Hyperfinite Factor.based on the notion of successful hyperfinite project. We will then explain

this definition and propose a variant that can be used in the GoI5.0
construction. We then exhibit a correspondence between Girard’s notion
and the latter.
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Definition 11.1.2 (Viewpoint) A viewpoint is a representation 𝜋 of the
algebra ℜ0,1 onto 𝐿2(R,𝜆) where 𝜆 is the Lebesgue measure, which satisfies the
following conditions:

▶ 𝐿∞(R,𝜆) ⊂ 𝜋(ℜ0,1);
▶ ∀𝐴 ⊂ R, tr(𝜋−1(𝜒𝐴)) = 𝜆(𝐴), where 𝜒𝐴 is the characteristic function

of 𝐴.

A viewpoint if faithful when the representation 𝜋 is faithful.

If 𝑇 : R→ R is a measure-preserving transformation, one can define the
isometry [𝑇] ∈ L(𝐿2(R,𝜆)):

[𝑇] : 𝑓 ∈ 𝐿2(R,𝜆) ↦→ 𝑓 ◦ 𝑇 ∈ 𝐿2(R,𝜆)

That [𝑇] is an isometry comes from the fact that𝑇 is measure-preserving:

⟨[𝑇] 𝑓 , [𝑇]𝑔⟩ =

∫
R
([𝑇] 𝑓 )(𝑥)([𝑇]𝑔)(𝑥)𝑑𝜆(𝑥)

=

∫
R
𝑓 ◦ 𝑇(𝑥)𝑔 ◦ 𝑇(𝑥)𝑑𝜆(𝑥)

=

∫
R
𝑓 ◦ 𝑇(𝑥)𝑔 ◦ 𝑇(𝑥)𝑑𝜆(𝑥)

=

∫
𝑇(R)

𝑓 (𝑥)𝑔(𝑥)𝑑𝜆(𝑥)

=

∫
R
𝑓 (𝑥)𝑔(𝑥)𝑑𝜆(𝑥)

= ⟨ 𝑓 , 𝑔⟩

Suppose now given 𝑈 : 𝑋 → 𝑌 a measure-preserving transformation,
with 𝑋,𝑌 ⊂ R measurable subsets. We define, for all map 𝑓 ∈ 𝐿2(R,𝜆),
[𝑈] 𝑓 (𝑥) = 𝑓 ◦𝑈(𝑥) if 𝑥 ∈ 𝑋 and [𝑈] 𝑓 (𝑥) = 0 otherwise. The operator
[𝑈] thus defined is a partial isometry. Indeed, if we write 𝑝 the projection
in L(𝐿2(R,𝜆)) induced by the characteristic map of 𝑌, then for all 𝑓 , 𝑔 ∈
𝑝𝐿2(R,𝜆),

⟨[𝑈] 𝑓 , [𝑈]𝑔⟩ =

∫
R
([𝑈] 𝑓 )(𝑥)([𝑈]𝑔)(𝑥)𝑑𝜆(𝑥)

=

∫
𝑋

([𝑈] 𝑓 )(𝑥)([𝑈]𝑔)(𝑥)𝑑𝜆(𝑥)

=

∫
𝑋

𝑓 ◦𝑈(𝑥)𝑔 ◦𝑈(𝑥)𝑑𝜆(𝑥)

=

∫
𝑌

𝑓 (𝑥)𝑔(𝑥)𝑑𝜆(𝑥)

=

∫
R
𝑓 (𝑥)𝑔(𝑥)𝑑𝜆(𝑥)

Moreover, it is clear that for all 𝑓 , 𝑔 ∈ (1−𝑝)𝐿2(R,𝜆)one has ⟨[𝑈] 𝑓 , [𝑈]𝑔⟩ =
0.

Definition 11.1.3 A hyperfinite project 𝔞 = 0 · + · 𝛼 + 𝐴 of carrier 𝑝 is
successful w.r.t. a viewpoint 𝜋 when:

▶ 𝜋(𝑝) ∈ 𝐿∞(R);
▶ 𝛼 is the normalised trace on 𝔄;
▶ there exists a basis 𝑒1 , . . . , 𝑒𝑛 of the dialect 𝔄 such that 𝐴 = [ 𝑓 ] where 𝑓

is a partial measure-preserving bĳection of R × {1, . . . , 𝑛};



11. Semantic complexity 184

▶ the set {𝑥 ∈ R × {1, . . . , 𝑛} | 𝑓 (𝑥) = 𝑥} is of null measure.

Remark 11.1.1 We added the last condition to the definition proposed
by Girard [6]. This condition corresponds to the trace condition in our
definition of promising projects (Definition 11.1.5), which can be explained
intuitively (Remark 11.1.2).

Success and Bases

In geometry of Interaction, as in the theory of proof structures [3], in game
semantics [27] or in classical realisability [77, 78], one needs to characterise
those elements which correspond to proofs: proof nets (i.e. satisfying
the correctness criterion), winning strategies, or proof-like terms. In GoI
models, these ‘proof-like terms’, or winning strategies are called successful
projects. In previous GoI models a successful project was defined as a
partial symmetry. This definition was quite satisfying, but some of its
important properties relied on the fact that the model depended on a
chosen MASA 𝔄, i.e. it relied on the fact that the constructions were
basis-dependent (i.e. operators are chosen in the normalising groupoid
of 𝔄 only).

In Girard’s hyperfinite model, constructions are no longer basis-dependent:
the operators considered are no longer restricted to those elements that
are in the normalising groupoid of a MASA, but can be any hermitian
operator of norm at most 1. By going to this more general setting, defining
successful projects as partial symmetries is no longer satisfying. The
reason for this is quite easy to understand. Indeed, a satisfying notion of
success should verify two essential properties. The first of these is that it
should ‘compose’, i.e. the execution of two successful projects should be
a successful project. The second is that it should be ‘coherent’, i.e. two
orthogonal projects cannot be simultaneously successful.

Since we are no longer restricted to operators in a chosen normalising
groupoid, the definition of successful projects as partial symmetries
now lacks these two essential properties. This can be illustrated by easy
examples on matrices (to obtain examples in the hyperfinite factor, use
your favourite embedding). For instance, let us consider the following
matrices:

𝑢 =
©­«

0 1 0
1 0 0
0 0 0

ª®¬ 𝑣 =

©­­­­«
0

√
1
2 −

√
1
2√

1
2 0 0

−
√

1
2 0 0

ª®®®®¬
One can check that 𝑢, 𝑣 are partial symmetries: it is obvious for 𝑢, and
the following computation shows it for 𝑣.

𝑣𝑣∗ = 𝑣2 =
©­«

1 0 0
0 1

2 − 1
2

0 − 1
2

1
2

ª®¬ =
©­«

1 0 0
0 1

2 − 1
2

0 − 1
2

1
2

ª®¬
2

However, their product is not a partial isometry (hence not a partial
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symmetry), which shows that the notion do not compose.

𝑢𝑣 =
©­«

0 1 0
1 0 0
0 0 0

ª®¬
©­­­­«

0
√

1
2 −

√
1
2√

1
2 0 0

−
√

1
2 0 0

ª®®®®¬
=

©­­­«
√

1
2 0 0

0
√

1
2 −

√
1
2

0 0 0

ª®®®¬
Moreover, the computation of the determinant of 1 − 𝑢𝑣 shows that the
notion is not coherent, since one can define from them two orthogonal
projects. ��������

1 −
√

1
2 0 0

0 1 −
√

1
2

√
1
2

0 0 1

�������� = (1 −
√

1
2
)2 ≠ 0,∞

In order to obtain a good notion of successful project, we will have to
restrict ourselves to a class of partial symmetries which is closed under
sum and composition. Sums and products of partial isometries in the
normalising groupoid of a MASA 𝔄 are again partial isometries‗ in the
normalising groupoid of 𝔄. This will be enough to show that if 𝑢 and
𝑣 are partial symmetries in G(𝔄), then 𝑢 :: 𝑣 is a partial symmetry in
G(𝔄).
In the finite-dimensional case, this amounts to choosing a basis. Indeed,
the complete classification of MASAs in L(ℍ) (Theorem 11.1.6) shows that
whenℍ is of finite dimension the MASAs ofL(ℍ) are exactly the diagonal
MASAs: the set of diagonal matrices in a fixed basis. One can therefore
define a subjective notion of successful projects, i.e. a notion of success
that depends on the choice of a basis. An operator is then successful
w.r.t. B when it is a partial symmetry in the normalising groupoid of the
algebra 𝔇B of diagonal operators in the basis B. The composition of such
partial symmetries can be shown to be itself a partial symmetry in the
normalising groupoid of 𝔇B and the definition of success is therefore
consistent with the execution. However, we are still unable to show the
coherence of this definition: given two partial symmetries 𝑢, 𝑣 in G(𝔇B),
the logarithm of the determinant of 1 − 𝑢𝑣 is not necessarily equal to
0 or ∞. Once again, it is enough to consider matrices to illustrate this
fact, and we will give an example with 2 × 2 matrices. Let 𝑢 and 𝑣 be the
following matrices:

𝑢 =

(
0 −1
−1 0

)
𝑣 =

(
0 1
1 0

)
Then det(1 − 𝑢𝑣) = 4, i.e. − log(det(1 − 𝑢𝑣)) ≠ 0,∞.

The issue here arises from the fact that one cannot distinguish between
the identity and its opposite, i.e. the definition does not exclude negative
coefficients. The solution proposed by Girard [6] is to consider a notion
of success that depends on a representation of the algebra: a successful
project will then have its operators 𝑢 induced from a measure-preserving
transformation on a measured space.

There is however another way to bypass the problem just exposed. It
corresponds to an old version of Girard’s hyperfinite GoI model, which
we will refer to as the matricial GoI model, in which orthogonality is

‗ In the case of the sum, one has to impose a condition on domains and codomains.
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slightly modified. In this GoI model, defined as GoI5.0 in the previous
chapter, it is possible to keep the notion of successful projects as partial
symmetries in the normalising groupoid of a MASA 𝔄 since the change
of orthogonality bypasses the issue with coherence. This GoI model will
be related to the hyperfinite GoI model later on.

The matricial GoI model is based on the same notion of projects as the
hyperfinite GoI model. The two constructions essentially differ on the
measurement J·, ·K𝑚 which is used to defines the orthogonality relation.
Notice that all constructions on projects are the same in both models.

We are now ready to define a notion of success for the matricial GoI
model. To avoid an overlap of terminology, we call here outlooks the
equivalent of Girard’s viewpoints, and promising projects the equivalent of
Girard’s successful projects. We will first show how this notion of success
satisfies coherence and compositionality, and we will then explain its
relation to Girard’s notion of success.

Definition 11.1.4 (Outlook) An outlook is a MASA in ℜ0,1.

Definition 11.1.5 (Promising Project) An hyperfinite project 𝔞 = 𝑎 · + · 𝛼+𝐴
is promising w.r.t the outlook 𝔓 if:

▶ Dialect. The dialect 𝔄 is a finite factor, i.e. a matrix algebra;
▶ Pseudo-Trace. 𝛼 is the normalised trace on 𝔄;
▶ Wager. 𝔞 is wager-free: 𝑎 = 0;
▶ Symmetry. 𝐴 is a partial symmetry in the normalising groupoid 𝔓⊗𝔔,

where 𝔔 is a MASA in 𝔄;
▶ Traces. for all projection 𝜋 ∈ 𝔓 ⊗ 𝔑𝔄(𝔔), tr(𝜋𝐴) = 0.

Remark 11.1.2 We remark here that the last ‘trace condition’ is an addition
to Girard’s condition of successful projects (see Remark 11.1.1). This is
however a quite natural condition as a successful or promising project
should be understood as the representation of a set of axiom links in a
proof net, i.e. it should be a symmetry without any fixpoints. Even though
the alternative definition of success without this additional condition
would be satisfactory (it would satisfy coherence and compositionality),
it does not convey the intuitions coming from proof nets.

Definition 11.1.6 A conduct A is correct w.r.t. the outlook 𝔄 if there exists a
hyperfinite project 𝔞 ∈ A which is promising w.r.t. 𝔄.

We can check that the notion of promising project satisfies the essential
properties: compositionality and coherence.

Proposition 11.1.1 (Coherence) Let 𝔓 be an outlook. The two conducts A and
A‹ cannot both contain a promising project w.r.t. 𝔓.

Proposition 11.1.2 (Compositionality) Let A,B,C be conducts such that
A and C‹ are non-empty. If 𝔣 ∈ A ⊸ B and 𝔤 ∈ B ⊸ C are promising
hyperfinite projects w.r.t. the outlook 𝔓, then 𝔣 :: 𝔤 is a promising hyperfinite
project w.r.t. 𝔓 in the conduct A ⊸ C.

This notion can then be related to Girard’s original notion of success as
follows.

Proposition 11.1.3 Every faithful viewpoint defines an outlook.
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Proposition 11.1.4 Let 𝜋 be a faithful viewpoint, and 𝔅 = 𝜋−1(𝐿∞(R,𝜆))
the outlook defined by 𝜋. If 𝔞 = 0 · + · tr + 𝐴 is successful w.r.t. 𝜋, then it is
promising w.r.t. 𝔅.

MASAs in type 𝐼 factors

Before detailing the results, we need to recall some important results on
the classification of maximal abelian subalgebras.

Definition 11.1.7 Let 𝔐 be a von Neumann algebra. A maximal abelian
sub-algebra (MASA) 𝔄 of 𝔐 is a von Neumann sub-algebra of 𝔐 such that for
all intermediate sub-algebras 𝔅, i.e. 𝔄 ⊂ 𝔅 ⊂ 𝔐, if 𝔅 is abelian then 𝔄 = 𝔅.

If 𝔄 and 𝔅 are MASAs in a von Neumann algebra 𝔐, they can be
‘isomorphic’ in three different ways:

▶ they can be isomorphic as von Neumann algebras – this is the
weakest notion;

▶ there can exists an automorphism Φ of 𝔐 such that Φ(𝔄) = 𝔅; we
then say that 𝔄 and 𝔅 are conjugated;

▶ there can exist a unitary operator1 𝑢 ∈ 𝔐 such that 𝑢𝔄𝑢∗ = 𝔅 – 1: We recall that a unitary operator is an
operator 𝑢 such that 𝑢𝑢∗ = 𝑢∗𝑢 = 1.this is the strongest notion; we then say that 𝔄 and 𝔅 are unitarily

equivalent.

Let us quickly discuss the finite-dimensional case. We fix ℍ a finite-
dimensional Hilbert space of dimension 𝑘 ∈ N. Then L(ℍ) is isomorphic
to the algebra of 𝑘 × 𝑘 matrices. Picking a basis B = (𝑏1 , . . . , 𝑏𝑘) of
ℍ, one can define the sub-algebra 𝔇B of L(ℍ) containing all diagonal
matrices in the basis B. This algebra is obviously commutative, and it
is moreover maximal as a commutative sub-algebra of L(ℍ): if 𝔄 is a
commutative sub-algebra of L(ℍ) containing 𝔇B, then 𝔄 = 𝔇B. A more
involved argument shows that any maximal abelian sub-algebra of L(ℍ)
is the diagonal algebra induced by a basis; this result is also a direct
corollary of Proposition 11.1.5. These algebras 𝔇B where B is a basis of
ℍ are clearly pairwise isomorphic, as it suffices to map bĳectively the
bases one onto the other. They are in fact unitarily equivalent, as such
a bĳection induces a unitary operator. This shows that the distinctions
we just made are useless in the finite-dimensional case: all MASAs are
unitarily equivalent.

We will now state a classification result about maximal abelian sub-
algebras of L(ℍ), which gives a complete answer to the classification
problem of MASAs in type I factors. This theorem will be preceded
by a proposition showing that all diffuse MASAs in L(ℍ) are unitarily
equivalent; this will be of use later on, as those MASAs of a type II factor
𝔑 ⊂ L(ℍ)which are also MASAs of L(ℍ) are necessarily diffuse. These
results can be found in Sinclair and Smith’s book [14]. [14]: Sinclair et al. (2008), Finite von Neu-

mann algebras and Masas

Proposition 11.1.5 Let 𝔄 be a MASA of L(ℍ) which does not have (non-zero)
minimal projections – we say in this case that 𝔄 is a diffuse MASA. Then there
exists a unitary𝑈 : ℍ→ 𝐿2([0, 1]) such that𝑈𝔄𝑈∗ = 𝐿∞([0, 1]).

Theorem 11.1.6 Let 𝔄 be a MASA in L(ℍ). Then:

▶ either 𝔄 is unitarily equivalent to 𝐿∞([0, 1]) (diffuse case);
▶ or 𝔄 is unitarily equivalent to 𝔇, a diagonal algebra (discrete case);
▶ or 𝔄 is unitarily equivalent to 𝔇 ⊕ 𝐿∞([0, 1]), where 𝔇 is a diagonal

algebra (mixed case).
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Things are therefore clear concerning the MASAs inL(ℍ), as the previous
theorem provides a complete classification of those. In the case of von
Neumann algebras of type II1 however, things are more complicated and
such a complete classification does not exist in spite of the numerous
works on the subject.

Dixmier’s Classification. We begin the discussion about MASAs of
type II1 von Neumann algebras by explaining Dixmier’s classification [11], [11]: Dixmier (1954), Sous-anneaux abéliens

maximaux dans les facteurs de type finiwhich considers the algebra generated by the normaliser of the MASA.
Let us stress that this classification is not exhaustive. This presentation of
Dixmier’s classification will also give us the opportunity to state some
results that will be of use below.

Definition 11.1.8 (normaliser) Let 𝔐 be a von Neumann algebra, and 𝔄 a von
Neumann sub-algebra of 𝔐. We will denote by N𝔐(𝔄) the normaliser of 𝔄 in
𝔐 which is defined as:

N𝔐(𝔄) = {𝑢 ∈ 𝔐 | 𝑢 unitary, 𝑢𝔄𝑢∗ = 𝔄}

We will denote by N𝔐(𝔄) the von Neumann algebra generated by N𝔐(𝔄).

Definition 11.1.9 (normalising Groupoid) Let 𝔐 be a von Neumann algebra
and 𝔄 be a von Neumann sub-algebra of 𝔐. We will denote by G𝔐(𝔄) the
normalising groupoid of 𝔄 in 𝔐 which is defined as:

G𝔐(𝔄) = {𝑢 ∈ 𝔐 | 𝑢𝑢∗𝑢 = 𝑢, 𝑢𝑢∗ ∈ 𝔄, 𝑢∗𝑢 ∈ 𝔄, 𝑢𝔄𝑢∗ ⊂ 𝔄}

We will denote by G𝔐(𝔄) the von Neumann algebra generated by G𝔐(𝔄).

Definition 11.1.10 (Dixmier Classification) Let 𝔐 be a factor, and 𝔓 a MASA
in 𝔐. We distinguish three cases:

1. if N𝔐(𝔓) = 𝔐, we say that 𝔓 is regular (or Cartan);
2. if N𝔐(𝔓) = 𝔎, where 𝔎 is a factor distinct from 𝔐, we say that 𝔓 is

semi-regular;
3. if N𝔐(𝔓) = 𝔓, we say that 𝔓 is singular.

The following four theorems can be found in the literature. The first two
theorems are due to Dye [150], and Jones and Popa [151]. They can be found [150]: Dye (1963), On groups of measure

preserving transformations. II.
[151]: Jones et al. (1982), Some properties of
MASAs in factors

along with their proofs in Sinclair and Smith book [14] about MASAs in

[14]: Sinclair et al. (2008), Finite von Neu-
mann algebras and Masas

finite factors. The third is a somewhat recent generalisation [152] of a

[152]: Chifan (2007), On the normalizing
algebra of a masa in a II1 factor

result which was previously known to hold for singular MASAs.

Theorem 11.1.7 Let 𝔐 be a von Neumann algebra with a faithful normal trace,
and 𝔄 a MASA in 𝔐. Then the set G𝔐(𝔄) is contained in the sub-vector space
of 𝔐 generated by N𝔐(𝔄).

Corollary 11.1.8 Under the hypotheses of the preceding theorem, the von
Neumann algebras N𝔐(𝔄) and G𝔐(𝔄) are equal.

Theorem 11.1.9 Let 𝔐 be a type II1 factor, and 𝔄 a MASA in 𝔐. Let 𝑝, 𝑞 ∈ 𝔄
be projections of equal trace. Then, if N𝔐(𝔄) is a factor, there exists a partial
isometry 𝑣0 ∈ G𝔐(𝔄) such that 𝑝 = 𝑣0𝑣

∗
0 and 𝑞 = 𝑣∗0𝑣0.

Theorem 11.1.10 Let 𝔐1 and 𝔐2 be type II1 factors. For 𝑖 = 1, 2, let 𝔄𝑖 be a
MASA in 𝔐𝑖 . Then:

N𝔐1⊗𝔐2(𝔄1 ⊗ 𝔄2) = N𝔐1(𝔄1) ⊗ N𝔐2(𝔄2)
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Lastly, the following theorem is due to Connes, Feldman and Weiss
[153]. [153]: Connes et al. (1981), An amenable

equivalence relation is generated by a single
transformationTheorem 11.1.11 Let 𝔄,𝔅 be two regular MASAs of the hyperfinite factor ℜ of

type II1. Then 𝔄 and 𝔅 are unitarily equivalent.

As the classification proposed by Dixmier is neither exhaustive nor very
precise, another invariant was introduced by Pukansky. We now define
this invariant and discuss its relationship with Dixmier’s classification.

Pukansky’s Invariant. Pukansky [154] defined a numerical invariant [154]: Pukanszky (1960), On maximal al-
belian subrings of factors of type II1for MASAs 𝔄 of a type II1 factor 𝔑. Consider that 𝔑 is endowed with

a faithful normal trace 𝜏, and let 𝐽 be the anti linear isometry 𝐽𝑥 = 𝑥∗

onto 𝐿2(𝔑). Pukansky’s invariant is based on the type I decomposition of
(𝔄∪ 𝐽𝔄𝐽)′. Indeed this algebra, as the commutant of an abelian algebra, is
of type I and therefore can be decomposed as a sum of factors of type 𝐼𝑛
(where 𝑛 might be equal to∞). The Pukansky invariant is then essentially
the set of all values of 𝑛 that appear in this decomposition.

The following lemma justifies the definition of Pukansky’s invariant. We
define 𝑒𝔄 as the projection of 𝐿2(𝔑) onto 𝐿2(𝔄) and we will write 𝔅𝔄 the
commutative algebra generated by 𝔄 ∪ 𝐽𝔄𝐽.

Lemma 11.1.12 Let 𝔑 be a type II1 factor represented onto 𝐿2(𝔑) and 𝔄 a
MASA in 𝔑. Then 𝑒𝔄 ∈ 𝔅𝔄 and 𝑒𝔄 is a central projection – i.e. a projection
onto the center of the algebra – in 𝔅′

𝔄
.

Definition 11.1.11 Let 𝔄 be a MASA in a factor 𝔑 of type II1. We define the
Pukansky invariant Puk(𝔄,𝔑) of 𝔄 in 𝔑 – usually denoted by Puk(𝔄) when
the context is clear – as the set of all natural numbers 𝑛 ∈ N ∪ {∞} such that
(1 − 𝑒𝔄)𝔅′𝔄 has a non-zero type I𝑛 part.

By removing the projection 𝑒𝔄 from 𝔅′
𝔄

, we are erasing the part 𝔅′
𝔄
𝑒𝔄 =

𝔅𝔄𝑒𝔄 which is abelian for all MASA 𝔄. This allows for a better invariant
since its inclusion would add the integer 1 to all Pukansky invariants,
rendering impossible the distinction between MASAs of invariant {2}
and those of invariant {1, 2}.
The Pukansky invariant satisfies that if 𝔄 and 𝔅 are two unitarily equiva-
lent MASAs in a factor 𝔐 of type II1, then Puk(𝔄) = Puk(𝔅). However,
the reciprocal statement is not true. One can even find four MASAs
𝔄,𝔅,ℭ,𝔇 in the type II1 hyperfinite factor with equal invariants (all
equal to {1}) where 𝔄 is regular, 𝔅 is semi-regular, ℭ is singular, and
𝔇 lies outside of Dixmier’s classification. The Pukansky invariant is
nonetheless very useful and some results about it will be used in this
paper.

The four following theorems can be found in the book by Sinclair and
Smith [14]. [14]: Sinclair et al. (2008), Finite von Neu-

mann algebras and Masas

Proposition 11.1.13 Let 𝔑 be a type II1 factor and 𝔄 be a MASA in 𝔑. If 𝔄 is
regular, then Puk(𝔄) = {1}.

Proposition 11.1.14 Let 𝔑 be a type II1 factor and 𝔄 be a MASA in 𝔑. The
following statements are equivalent:

▶ 𝔄 is a MASA in L(𝐿2(𝔑));
▶ Puk(𝔄) = {1}.
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Proposition 11.1.15 Let 𝔑 be a type II1 factor and 𝔄 be a MASA in 𝔑.

▶ If Puk(𝔄) ⊂ {2, 3, 4, . . . ,∞}, then 𝔄 is singular.
▶ If N(𝔄) ≠ 𝔄, then 1 ∈ Puk(𝔄).

Proposition 11.1.16 Let 𝔄 (resp. 𝔅) be a MASA in a factor 𝔐 (resp. 𝔑) of type
II1. Then:

Puk(𝔄 ⊗ 𝔅) = Puk(𝔄) ∪ Puk(𝔅) ∪ Puk(𝔄)Puk(𝔅)

where Puk(𝔄)Puk(𝔅) = {𝑎 × 𝑏 | 𝑎 ∈ Puk(𝔄), 𝑏 ∈ Puk(𝔅)}.

We have stated above that one can find four MASAs 𝔄,𝔅,ℭ,𝔇 of the
hyperfinite factor ℜ of type II1 that all have the same Pukansky invariant
and such that 𝔄 is regular, 𝔅 is semi-regular, ℭ is singular, and 𝔇 lies
outside of Dixmier classification (we will say that 𝔇 is non-Dixmier-
classifiable). The regular MASAs are necessarily of Pukansky invariant
{1}, and one can show that such MASAs exist in the type II1 hyperfinite
factor ℜ (for instance by considering a construction of the hyperfinite
factor as a crossed product), as explained in Sinclair and Smith book [14]). [14]: Sinclair et al. (2008), Finite von Neu-

mann algebras and MasasThis gives the existence of a regular MASA 𝔄 in ℜ of Pukansky invariant
{1}.
On the other hand, Stuart White [155] showed that the so-called Tauer [155]: White (2006), Tauer Masas in the

Hyperfinite II1 FactorMASAs all have as Pukansky invariant the singleton {1}. And it is known
that there exists singular Tauer MASAs [156] and semi-regular Tauer [156]: White et al. (2007), A continuous

path of singular masas in the hyperfinite II1
factor

MASAs [155] in the hyperfinite factor ℜ. This gives the existence of a

[155]: White (2006), Tauer Masas in the
Hyperfinite II1 Factor

semi-regular MASA 𝔅 and a singular MASA ℭ such that Puk(𝔅) =
Puk(ℭ) = {1}.
Lastly, let us show that the existence of singular MASAs with Pukansky
invariant equal to {1} implies the existence of non-Dixmier-classifiable
MASAs whose Pukansky invariant is equal to the singleton {1}. Indeed,
if 𝔄 is a MASA with Puk(𝔄) = {1}, we can consider 𝔄 ⊗ 𝔔 where 𝔔

is a regular MASA (thus Puk(𝔔) = {1}) of ℜ ⊗ ℜ. We then have that
Puk(𝔄⊗𝔔) = {1}by Proposition 11.1.16, and moreover, by Theorem 11.1.10,
we have:

Nℜ⊗ℜ(𝔄 ⊗ 𝔔) = Nℜ(𝔄) ⊗ Nℜ(𝔔) = 𝔄 ⊗ ℜ

But the center of 𝔄 ⊗ ℜ is equal to 𝔄 ⊗ C since 𝔄 is commutative and
the commutant of a tensor product is equal to the tensor product of
the commutants (a result due to Tomita [157]). Thus 𝔄 ⊗ ℜ is not a [157]: Tomita (1967), Quasi-Standard von

Neumann Algebrasfactor, which implies that 𝔄 ⊗ 𝔔 is neither regular nor semi-regular.
Since 𝔄 ⊗ 𝔔 is obviously not equal to 𝔄 ⊗ ℜ, we know that 𝔄 ⊗ 𝔔 is not
singular: it is therefore non-Dixmier-classifiable. Eventually, as ℜ ⊗ ℜ is
isomorphic to ℜ, it is enough to choose such an isomorphism 𝜙 to define
𝔇 = 𝜙(𝔄 ⊗ 𝔔) a MASA in ℜ which is non-Dixmier-classifiable and such
that Puk(𝔇) = {1}.

Dixmier’s Classification and Linear Logic

In this section, we will prove the main technical result of this paper.
We first prove that no non-trivial interpretation of linear logic proofs
exists w.r.t. a singular outlook. We then show that semi-regular outlooks
provide enough structure to interpret the exponential-free fragment of
linear logic. Lastly, we show that regular outlooks provide the structure
for the interpretation of exponential connectives.
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Singular MASAs

First, we show that every promising project w.r.t. an outlook 𝔓 which is
a singular MASA in ℜ0,1 is trivial, i.e. its operator is equal to 0. We will
first show two lemmas that will be of use afterwards. We will write 𝔄𝑝
the von Neumann algebra 𝑝𝔄𝑝 where 𝑝 is a projection, i.e. the restriction
of 𝔄 to the subspace corresponding to 𝑝.

Lemma 11.1.17 Let 𝔄 be a MASA in a factor 𝔐, and let 𝑝 be a projection in 𝔄.
If 𝐴 ∈ 𝔐 normalises 𝔄, and 𝐴𝑝 = 𝑝𝐴, then 𝐴 normalises 𝔄𝑝 .

Proof. We pick 𝑥 in 𝔄𝑝 ⊂ 𝔄. Then 𝐴𝑥𝐴∗ = 𝑦 ∈ 𝔄 since 𝐴 normalises 𝔄.
Moreover, 𝑦𝑝 = 𝐴𝑥𝐴∗𝑝 = 𝐴𝑥(𝑝𝐴)∗ = 𝐴𝑥(𝐴𝑝)∗ = 𝐴𝑥𝑝𝐴∗ = 𝐴𝑥𝐴∗ = 𝑦,
and a similar argument shows that 𝑝𝑦 = 𝑦. Thus 𝑦 = 𝑝𝑦𝑝 and 𝑦 ∈ 𝔄𝑝 . R

Remark 11.1.3 This result implies that 𝑝G𝔐(𝔄)𝑝 ⊂ G𝔐𝑝 (𝔄𝑝).

The following lemma is of particular importance since it will allow us to
reduce our study to the case of a factor of type II1, and thus to use Chifan’s
result (Theorem 11.1.10). The fact that 𝔄 is abelian is essential here. Indeed,
one can even find finite-dimensional counter-examples in the case 𝔄 is a
non-commutative singular von Neumann sub-algebra. For instance, the
subfactor 𝔄 = 𝔐2(C) ⊕ C of 𝔐3(C) is singular : 𝔑𝔐3(C)(𝔄) = 𝔄. Picking
the projection 𝑝 = 0 ⊕ 1 ⊕ 1 in 𝔐3(C), we have that 𝔄𝑝 is not singular in
(𝔐3(C))𝑝 – it is even a regular sub-algebra – since 𝔑𝔐2(C)(𝔄𝑝) = 𝔐2(C).

Lemma 11.1.18 Let 𝔄 be a MASA in a von Neumann algebra 𝔐, and 𝑝 a
projection in 𝔄. Then 𝔄𝑝 is a maximal abelian sub-algebra of 𝔐𝑝 . Moreover, if
𝔄 is singular, 𝔄𝑝 is singular.

Theorem 11.1.19 (Singular Outlooks and Soundness) If 𝔓 is a singular
MASA in ℜ0,1, then every promising project w.r.t. the outlook 𝔓 is trivial.

Remark 11.1.4 Without the additional condition (about projections) in
the definition of promising projects, it would be easy to find non-trivial
hyperfinite projects which are promising w.r.t. a singular MASA 𝔓 in
ℜ0,1. Indeed, let 𝑝, 𝑞 be two projections in 𝔓. Then the project 𝔞 =

(𝑝 + 𝑞, 0, 1,C, 𝑝 + 𝑞)would then clearly be promising 𝔓.
One might wonder however if this condition could be weakened, asking
for instance that the trace of 𝐴 be zero. This condition would not be
sufficient, since for all projections 𝑝, 𝑞 ∈ 𝔓 such that tr(𝑝) = tr(𝑞), the
hyperfinite project 𝔟 defined as (𝑝 + 𝑞, 0, 1,C, 𝑝 − 𝑞) would then be
promising as tr(𝑝 − 𝑞) = tr(𝑝) − tr(𝑞) = 0.
Another weaker condition would be: for all projections 𝜋 ∈ 𝔓 ⊗ 𝔔,
tr(𝜋𝐴) = 0. However, the following project would then be promising
w.r.t. 𝔓 when 𝑝, 𝑞 ∈ 𝔓 are projections:

𝔠 = (𝑝 + 𝑞, 0, tr,𝔐2(C),
(

0 (𝑝 + 𝑞)⊗1ℜ
(𝑝 + 𝑞)⊗1ℜ 0

)
)

All those projects may be considered as successful, so why do we want
to exclude them? The reason can be found in the relationship between
the GoI interpretation of proofs and the theory of proof nets. Indeed, as
it is explained in both Girard and the author’s work on the interpretation
of multiplicatives [15, 139], the GoI interpretation of a proof corresponds [15]: Seiller (2012), Interaction Graphs: Mul-

tiplicatives
[139]: Girard (1987), Multiplicatives

to a representation of the axiom links of the corresponding proof net.
As a consequence, a successful project should be understood intuitively
as a set of axiom links, i.e. a partial symmetry not containing any fixed
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point – something that corresponds to the fact that for all non-zero vector
𝜉 the symmetry 𝑆 satisfies 𝑆𝜉 ≠ 𝜉. In this respect, the first projects
considered above should therefore not be considered as successful as
they obviously do not satisfy this property. The reason why last project
should also not be considered as successful is, however, more involved
since it is a symmetry not containing fixed points. In this case, however,
the vectors 𝜉 and 𝑆𝜉 differ only from the dialect2, i.e. the second projection 2: The dialect is the name given by Girard

to the algebra L(C𝑆)where 𝑆 is the set of
control states in the terminology of this
document.

of the vector. Thinking about proof nets again, this second projection,
the dialect, corresponds to slices in additive proof nets [158]. This last

[158]: Girard (1995), Proof nets: the parallel
syntax for proof theory

project represents, in this respect, an axiom link between a formula 𝐴
in a slice 𝑠1 and the same formula 𝐴 in a different slice 𝑠2. The reader
familiar with additive proof nets should now be convinced that such a
project should not be successful, as it represents something which is not
a valid axiom link.

Non-Singular MASAs

In this section, we consider chosen an outlook 𝔓 which is either a regular
or a semi-regular MASA in ℜ0,1. We will show a full soundness result
for the sequent calculus MALLT,0 (Figure 11.1), i.e. we interpret formulas
and sequents as conducts and proofs as hyperfinite projects and we show
that for all proof 𝜋 of a sequent ⊢ Γ, the interpretation ∥𝜋∥ is a promising
project which belongs to ∥Γ∥.

The Sequent Calculi MALLT,0. We will briefly define the sequent
calculus MALLT,0 for which we show a soundness result. This sequent
calculus was defined in order to prove a soundness result for interaction
graphs [16]. This is the usual sequent calculus for multiplicative-additive [16]: Seiller (2016), Interaction graphs: Ad-

ditiveslinear logic without multiplicative units (but including additive units). Al-
though multiplicative units can be dealt with, they need a more involved
sequent calculus with polarised formulas that deals with exponential con-
nectives [13]. A soundness result for this more involved calculus exists, [13]: Seiller (2019), Interaction Graphs: Ex-

ponentialsbut the result does not justifies the amount of work needed to correctly
define the calculus. The interested reader can have a look at the author’s
work on exponentials [13] to persuade herself that this extended result [13]: Seiller (2019), Interaction Graphs: Ex-

ponentialsholds as well.

In earlier works [13, 15–17], we took into account the locativity of the [13]: Seiller (2019), Interaction Graphs: Ex-
ponentials
[15]: Seiller (2012), Interaction Graphs: Mul-
tiplicatives
[16]: Seiller (2016), Interaction graphs: Ad-
ditives
[17]: Seiller (2017), Interaction Graphs:
Graphings

framework by defining a localised sequent calculus locMALLT,0 for which
formulas have a specific location and rules are subject to constraints on
the locations of the formulas appearing in the sequents. This localised
version of the sequent calculus is used in order to prove a soundness
result more easily as it presupposes the locativity constraints of the GoI
model. The soundness result for the usual non-localised calculus is then
obtained by noticing that every formula, thus sequent, and every proof
can be ‘localised’, i.e. interpreted as a formula, sequent or proof of the
localised calculus. We will here define directly localised interpretations
of the non-localised sequent calculus in order to limit the space needed
to show the results.

Let us fix V = {𝑋𝑖}𝑖∈N a set of variables.

Definition 11.1.12 (Formulas of MALLT,0) The formulas of MALLT,0 are
defined by the following grammar:

𝐹 := 𝑋𝑖 | 𝑋‹
𝑖 | 𝐹 ⊗ 𝐹 | 𝐹 ` 𝐹 | 𝐹 & 𝐹 | 𝐹 ⊕ 𝐹 | 0 | T
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Ax
⊢ 𝑋‹

𝑖
, 𝑋𝑖

⊢ 𝐴,Δ ⊢ 𝐴‹ , Γ
Cut⊢ Δ, Γ

⊢ 𝐴,Δ ⊢ 𝐵, Γ
⊗⊢ 𝐴 ⊗ 𝐵,Δ, Γ

⊢ 𝐴, 𝐵, Γ `⊢ 𝐴` 𝐵, Γ

⊢ 𝐴𝑖 , Γ ⊕𝑖⊢ 𝐴0 ⊕ 𝐴1 , Γ

⊢ Γ, 𝐴 ⊢ Γ, 𝐵
&⊢ Γ, 𝐴 & 𝐵

⊤⊢ ⊤, Γ No rules for 0.
Figure 11.1.: Sequent calculus MALLT,0

where the 𝑋𝑖 are variables.

Definition 11.1.13 (Proofs of MALLT,0) A proof of MALLT,0 is a derivation
obtained from the sequent calculus rules shown in Figure 11.1.

Interpretation of Formulas.

Definition 11.1.14 (Delocations) Let 𝑝, 𝑞 be projections in 𝔓. A delocation
from 𝑝 onto 𝑞 is a partial isometry 𝜃 : 𝑝 → 𝑞 such that 𝜃 ∈ 𝐺ℜ0,1(𝔓).

To interpret the sequent calculus, we will actually work with the MASA
𝔓 ⊕ 𝔓 of the algebra 𝔐2(ℜ0,1) in order to distinguish a primitive space
(the first component of the direct sum 𝔓 ⊕ 𝔓) and an interpretation space
(the second component of the direct sum). Interpretations of proofs
and formulas will be elements of the interpretation space, hence the
interpretation will in fact take place in ℜ0,1, while the primitive space will
be used in order to define correctly the syntax. The following proposition
shows that, since the interpretations will be hyperfinite projects defined in
the second component of the sum 𝔓 ⊕ 𝔓, the fact that they are promising
w.r.t. 𝔓 ⊕ 𝔓 in 𝔐2(ℜ0,1) implies that their restriction to ℜ0,1 (the second
component) is promising w.r.t. 𝔓.

Proposition 11.1.20 (Restriction) Let 𝔞 = (𝑝, 0, tr,ℜ, 𝐴) be a promising
project w.r.t. 𝔓 ⊕ 𝔓 ⊂ 𝔐2(ℜ0,1) such that 𝑝 ⩽ 0 ⊕ 1. Then 𝐴(0 ⊕ 1) =
(0 ⊕ 1)𝐴 = 𝐴, and 𝔞 is a promising project w.r.t. 𝔓 ⊂ (𝔐2(ℜ0,1))0⊕1 ≃ ℜ0,1.

Let us now define variables. We pick a family of pairwise disjoint
projections (𝑝𝑖)𝑖∈N. The projections 𝑝𝑖 ⊕ 0 will be called the primitive
locations of the variables, and one should think of this as our actual set of
variables.

Definition 11.1.15 (Variable names) A variable name is an integer 𝑖 ∈ N
denoted by capital letters 𝑋,𝑌, 𝑍, etc. A variable is a pair 𝑋𝜃 = (𝑋, 𝜃) where
𝑋 is a variable name, i.e. an integer 𝑖, and 𝜃 is a relocation of 𝑝𝑖 ⊕ 0 onto a
projection 0 ⊕ 𝑞𝑋𝜃 . The projection 0 ⊕ 𝑞𝑋𝜃 is referred to as the location of
the variable, and we will sometimes allow ourselves to forget about the first
component and simply write 𝑞𝑋𝜃 .

We now define the interpretation of formulas.

Definition 11.1.16 (Interpretation Basis) An interpretation basis is a map 𝛿
associating to each variable name𝑋 = 𝑖 a dichology 𝛿(𝑋) of carrier the primitive
location 𝑝𝑖 of 𝑋. This map extends to a function 𝛿̄ which associates, to each
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variable 𝑋𝜃, the dichology 𝛿̄(𝑋𝜃) = 𝜃(𝛿(𝑋)) of carrier 𝑞𝑋𝜃 – the location of
𝑋𝜃.

Definition 11.1.17 (Interpretation of Formulas) The interpretation ∥𝐹∥𝛿 of
a formula 𝐹 along the interpretation basis 𝛿 is defined inductively as follows:

▶ 𝐹 = 𝑋𝜃. We define ∥𝐹∥𝛿 as the dichology 𝛿̄(𝑋𝜃) of carrier 𝑞𝑋𝜃 ;
▶ 𝐹 = 𝑋‹

𝜃 . We define ∥𝐹∥𝛿 = (∥𝑋𝜃∥𝛿)‹, a dichology of carrier 𝑞𝑋𝜃 ;
▶ 𝐹 = 𝐴 ★ 𝐵 (★ ∈ {⊗,`,&,⊕). We define ∥𝐹∥𝛿 = ∥𝐴∥𝛿 ★ ∥𝐵∥𝛿, a

dichology of carrier 𝑝 + 𝑞, where 𝑝 and 𝑞 are the respective carriers of
∥𝐴∥𝛿 and ∥𝐵∥𝛿;

▶ 𝐹 = T (resp. 𝐹 = 0). We define ∥𝐹∥𝛿 = T0 (resp. 00), the full conduct
(resp. the empty conduct of carrier 0.

Definition 11.1.18 (Interpretation of Sequents) A sequent ⊢ Γ will be
interpreted as the ` of formulas in Γ, denoted by

˙
Γ.

Interpretation of proofs. The introduction rule of the ` as well as
the exchange rule will have a trivial interpretation, since premise and
conclusion sequents are interpreted by the same dichology: due to loca-
tivity, the commutativity and associativity of ` are real equalities and
not morphisms. Similarly, rules for ⊕ have an easy interpretation as it
suffices to extend the carrier of the project interpreting the premise to
define the interpretation of the conclusion. Moreover, the rule ⊤ has a
straightforward interpretation as the project (0, 0, 1C ,C, 0). Axioms will
be easily interpreted by delocations, whose existence is ensured by Theo-
rem 11.1.9. The case of cut has already been treated in Proposition 11.1.2,
and we therefore only need to deal with the introduction rules of ⊗ and
&.

Given two hyperfinite projects 𝔣 and 𝔤 in the interpretations of the
premises of a tensor (⊗) introduction rule, we will define a hyperfinite
project 𝔥 in the interpretation of the conclusion. The operation that
naturally comes to mind is to define this project as the tensor product
of the projects 𝔣 and 𝔤. It turns out that this interpretation of the ⊗
introduction rule is perfectly satisfactory: the following proposition
shows that the project 𝔥 defined as 𝔣 ⊗ 𝔤 is a project in the interpretation
of the conclusion.

Proposition 11.1.21 (Interpretation of the Tensor Rule) Let A,B,C,D be
conducts of respective carriers 𝑝𝐴 , 𝑝𝐵 , 𝑝𝐶 , 𝑝𝐷 . We have the following inclusion:

((A ⊸ B) ⊗ (C ⊸ D)) ⊂ ((A ⊗ C)⊸ (B ⊗ D))

We will now interpret the introduction rule for &. We will interpret
a proof ending with a & introduction rule by the sum of the projects
𝔣𝑝+𝑞 and 𝔤𝑝+𝑞 , where 𝔣 and 𝔤 – of respective carriers 𝑝 and 𝑞 – are the
interpretations of the sub-proofs whose conclusions are the premises
of the & rule. In order to perform this operation, it is necessary to first
delocalise the interpretations of the premises as the premises do not
have disjoint locations. Once this relocation is done, we can define the
project 𝔥 as 𝜃1(𝔣) & 𝜃2(𝔤) – where 𝜃1 and 𝜃2 are the delocations just
mentioned. We then apply the project implementing distributivity in
order to superpose the contexts. We refer the reader to the interpretation
of proofs of 𝑀𝐴𝐿𝐿T,0 in interaction graphs [16] for a more thorough [16]: Seiller (2016), Interaction graphs: Ad-

ditivesexplanation of this.
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For the next result, we will be needing a proposition shown in earlier
work [16] in a different setting, but whose proof easily adapts to the [16]: Seiller (2016), Interaction graphs: Ad-

ditivesmatricial (as well as the hyperfinite) GoI model. This proposition states
any element of a dichology3 A & B is observationally equivalent to a sum 3: We must inform the reader that the

terminology here differs from the cited
paper: what we call here a dichology
is called a behaviour in the interaction
graphs constructions [16].

𝔞1 ⊗ 𝔬𝑞 + 𝔞2 ⊗ 𝔬𝑝 with 𝔞1 ∈ A, 𝔞2 ∈ B, where observational equivalence is
defined, e.g. on elements of a conduct A, as follows:

𝔞 ∼A 𝔞′⇔ ∀𝔱 ∈ A‹ , J𝑎, 𝑡Kmat = J𝑎′, 𝑡Kmat

We recall that this notion of equivalence is a congruence, i.e. if 𝔞 ∼A 𝔞′,
then for all 𝔣 ∈ A ⊸ B we have 𝔣 :: 𝔞 ∼B 𝔣 :: 𝔞′. In particular, if 𝔞 ∼A 𝔞′ then
𝔞 ⊗ 𝔟 ∼A⊗B 𝔞′ ⊗ 𝔟 for all 𝔟 ∈ B.

Proposition 11.1.22 Let A,B be dichologies of respective carriers 𝑝, 𝑞. For
any element 𝔞 ∈ A & B, there exists elements 𝔞1 ∈ A and 𝔞2 ∈ B such that
𝔞1 ⊗ 𝔬𝑞 + 𝔞2 ⊗ 𝔬𝑝 ∼A&B 𝔞.

Corollary 11.1.23 Let A,B,C be dichologies of carriers 𝑝, 𝑞, 𝑟 respectively,
and 𝔣 a project of carrier 𝑝 + 𝑞 + 𝑟. If 𝔞 maps every sum 𝔞1 ⊗ 𝔬𝑞 + 𝔞2 ⊗ 𝔬𝑝 to an
element of C, then 𝔣 belongs to (A & B)⊸ C.

Proposition 11.1.24 (Interpretation of the & Rule) Let A,B,C be dichologies
of respective pairwise disjoint carriers 𝑝𝐴 , 𝑝𝐵 , 𝑝𝐶 , and let 𝜙(A) be a delocation of
A, with 𝜙 ∈ 𝐺ℜ0,1(𝔓), whose carrier is a projection disjoint from the projections
A,B,C. Then for all delocations4 𝜃1 , 𝜃2 , 𝜃3 in 𝐺ℜ0,1(𝔓), there exists a project 4: Supposing of course that the carriers

are pairwise disjoint.𝔚𝔦𝔱𝔥 in the dichology:

((A ⊸ B)& (𝜙(A)⊸ C))⊸ (𝜃1(A)⊸ (𝜃2(B)& 𝜃3(C)))

Moreover, 𝔚𝔦𝔱𝔥 is promising w.r.t. the outlook 𝔓.

Remark 11.1.5 The interpretation of the & introduction rule will therefore
be defined as the relatively complex construction5 𝔣&𝔤 = [𝔚𝔦𝔱𝔥](𝜃1(𝔣)& 5: We recall that 𝜃1 and 𝜃2 are well-

chosen delocations.𝜃2(𝔤)). This construction should not hide however the simplicity of the
underlying idea. Indeed, given two projects 𝔣 = (𝑝 + 𝑟, 0, 𝜙,𝔉, 𝐹) and
𝔤 = (𝑞 + 𝑟, 0, 𝛾,𝔊, 𝐺), we are just constructing the project:

𝔣&𝔤 = (𝑝 + 𝑞 + 𝑟, 0, 1
2
(𝜙 ⊕ 𝛾),𝔉 ⊕ 𝔊, 𝐹 ⊕ 𝐺)

Soundness. In order to state and show the full soundness result, we
first define the interpretation of proofs.

Definition 11.1.19 (Interpretations of Proofs) We inductively define the
interpretation of a proof Π:

▶ ifΠ is an axiom rule introducing the sequent ⊢ 𝑋𝜃;𝑋𝜙 (𝜃, 𝜙 are disjoint),
we define the interpretation Π• as the project (𝑞𝑋𝜃 + 𝑞𝑋𝜙 , 0, tr,ℜ, 𝜃𝜙∗ +
𝜙𝜃∗);

▶ if Π is obtained by application of a rule `, or an exchange rule, to a proof
Π1, we define Π• = Π•1 ;

▶ if Π is obtained by applying a ⊕ rule to a proof Π1 whose interpretation’s
carrier is 𝑝, thenΠ• = (Π•1)𝑝+𝑞 where 𝑞 is the carrier of the interpretation
of the introduced formula;

▶ if Π is obtained by applying a cut rule between two proofs Π1 and Π2,
then Π• = Π•1 ::Π•2 ;

▶ if Π is obtained by applying a ⊗ introduction rule to the proofs Π1 and
Π2, then Π• = Π•1 ⊗ Π•2 ;
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▶ if Π is obtained by the application of a & rule on the proofs Π1
and Π2 interpreted by projects Π•1 and Π•2 , we then define Π• =

[𝔚𝔦𝔱𝔥](𝜃1(Π•1) & 𝜃2(Π•2)) where 𝜃1 , 𝜃2 are delocations of Π•1 and Π•2
onto disjoint projections, and where 𝔚𝔦𝔱𝔥 is the project whose existence is
ensured by Proposition 11.1.24.

Theorem 11.1.25 (Full Soundness) Let 𝜋 be a proof of the sequent ⊢ Γ in
𝑀𝐴𝐿𝐿T,0, and 𝛿 an interpretation basis. Then the interpretation 𝜋• of 𝜋 is a
promising project w.r.t. 𝔓 in the interpretation ∥⊢ Γ;𝐴∥𝛿 of ⊢ Γ.

Regular MASAs

To interpret exponentials of Elementary Linear Logic (ELL), we consider
the construction proposed by Girard [6]. There is one major problem [6]: Girard (2011), Geometry of Interaction

V: Logic in the Hyperfinite Factor.with this construction, however. Indeed, if 𝔞 is a promising hyperfinite
project w.r.t. the outlook 𝔓, it is clear that the hyperfinite project !Ω𝔞 is
promising w.r.t the outlook Ω(𝔓⊗𝔔)where 𝔔 is a MASA in ℜ. However,
if it is obvious that Ω(𝔓 ⊗ 𝔔) is a MASA in ℜ0,1, it won’t be true, in
general, that Ω(𝔓 ⊗ 𝔔) = 𝔓. As those are both MASAs in ℜ0,1, the two
algebras Ω(𝔓 ⊗ 𝔔) and 𝔓 are diffuse abelian von Neumann algebras,
thus isomorphic as von Neumann algebras. This is however too weak a
result as this isomorphism is not in general realised by a unitary operator,
a necessary condition for an adequate interpretation of the promotion
rule.

Proposition 11.1.26 Let 𝔞 be a promising project w.r.t. the outlook 𝔓. Suppose
that 𝔓 is a regular MASA in ℜ0,1. Then there exists a partial isometry 𝑢 such
that 𝑢Ω(𝐴)𝑢∗ is a partial symmetry in the normalising groupoid of 𝔓.

One can notice that the interpretations of the contraction and functorial
promotion rules only use promising projects w.r.t. 𝔓. From this and the
preceding proposition, one can easily show an extension of the soundness
result stated above for the sequent calculi ELLpol and ELLcomp considered
in the author’s work on interaction graphs [13] as soon as the outlook is [13]: Seiller (2019), Interaction Graphs: Ex-

ponentialsa regular MASA. Let us notice that this proposition do not depend on
the morphism Ω chosen to define the exponentials (the soundness result
however depends on Ω since not all choices of morphisms would allow
for the interpretation of functorial promotion).

It is then natural to ask oneself if the converse of this result holds, i.e. if
the fact that 𝔓 is not regular implies that one cannot interpret (at least
one) exponential connective. We will not fully answer this question in
this paper, but we will discuss it anyway.

Let us first consider the Pukansky invariant of the outlook 𝔓 and of the
sub-algebra Ω(𝔓 ⊗ 𝔔) (using the same notations as in the preceding
proof). It is known6 that there exists singular MASAs in ℜ whose Pukan- 6: White [159] showed that all subset of

N ∪ {∞} is the Pukansky invariant of a
MASA in ℜ.

sky invariant is included in {2, 3, . . . ,∞}, and the sub-algebra 𝔔 satisfies
Puk(𝔔) = {1} since it is regular (Proposition 11.1.13). Using Proposi-
tion 11.1.16, we get that Puk(Ω(𝔓 ⊗ 𝔔)) contains 1, and it is therefore
impossible in this case that Ω(𝔓 ⊗ 𝔔) and 𝔓 be unitarily equivalent.

However, the Pukansky invariant of a semi-regular MASA is a subset
of N ∪ {∞} that contains 1 (from Proposition 11.1.15). Then, by using
Proposition 11.1.16, one shows that in this case Puk(Ω(𝔓 ⊗ 𝔔)) = Puk(𝔓).
It is therefore not possible to show the reciprocal statement of Proposi-
tion 11.1.26 in this manner. We conjecture that there exist perennializations
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Ω and semi-regular outlooks 𝔓 such that (the equivalent of) Proposi-
tion 11.1.26 holds. We also conjecture that there exists perennializations
Ω and semi-regular outlooks 𝔓 such that the (equivalent of) Propo-
sition 11.1.26 does not hold. A more interesting question would be to
know if for all perennializations (and therefore the one defined by Gi-
rard) there exists a semi-regular outlook 𝔓 such that the (equivalent of)
Proposition 11.1.26 does not hold.

Conclusion

The results obtained in this section can be combined into the following
theorem, which constitute the main technical result of this paper.

Theorem 11.1.27 Let 𝔓 be a maximal abelian sub-algebra of ℜ0,1. Then:

▶ if 𝔓 is singular, there are no non-trivial interpretations of any fragment
of linear logic by promising hyperfinite projects w.r.t. 𝔓;

▶ if 𝔓 is semi-regular, one can interpret soundly multiplicative-additive
linear logic (MALL) by promising hyperfinite projects w.r.t. 𝔓;

▶ if 𝔓 is regular, one can interpret soundly elementary linear logic (ELL)
by promising hyperfinite projects w.r.t. 𝔓.

11.2. Graphings and complexity: the set-up

We now turn to a series of results which can be understood as a con-
tinuation of the previous theorem. Indeed, the latter is partial: in the
regular case the logical system captured is unclear and depends on the
particular algebras considered. In other words, a regular maximal abelian
sub-algebra does not in general model exponentials properly, and one
can expect to have intermediate systems, between MALL and ELL. How-
ever, pursuing the characterisation of complexity classes through von
Neumann algebras would be difficult, as the theory of maximal abelian
von Neumann sub-algebras is very involved, full of open questions, and
does not provide a clear connection with programs or proof systems.

This is where graphings come in. As we have seen earlier, those can be
understood as representing operators in a group measure space von
Neumann algebra. This led me to try and provide a more precise corre-
spondence between maximal abelian sub-algebras and logical systems of
varying expressivity. It turns out that one proper way of expressing this
correspondence is through the complexity class captured by the type
of predicates over the natural numbers in the logical system obtained
through linear realisability techniques.

Integers and Machines

We now review some definitions necessary to define the characterisation
of complexity classes in the Interaction Graphs models [44]. We start by [44]: Seiller (2018), Interaction Graphs: Non-

deterministic Automatathe representation of binary words, which is related [38, 39] to the type
[38]: Aubert et al. (2016), Characterizing
co-NL by a group action
[39]: Aubert et al. (2016), Logarithmic Space
and Permutations

of binary lists in Elementary Linear Logic [143, 160]:

[143]: Girard (1995), Light Linear Logic
[160]: Danos et al. (2003), Linear Logic &
Elementary Time

BList := ∀𝑋 !(𝑋 ⊸ 𝑋)⊸ !(𝑋 ⊸ 𝑋)⊸ !(𝑋 ⊸ 𝑋).

Intuitively a binary word, say 001, is represented as a program that takes
two functions 𝑓0 and 𝑓1 of type 𝑋 → 𝑋, and produces the function
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ax
𝑋 ⊢ 𝑋

ax
𝑋 ⊢ 𝑋 ⊗

𝑋, 𝑋 ⊸ 𝑋 ⊢ 𝑋
ax

𝑋 ⊢ 𝑋 ⊗
𝑋, 𝑋 ⊸ 𝑋, 𝑋 ⊸ 𝑋 ⊢ 𝑋

ax
𝑋 ⊢ 𝑋 ⊗

𝑋, 𝑋 ⊸ 𝑋, 𝑋 ⊸ 𝑋, 𝑋 ⊸ 𝑋 ⊢ 𝑋 `
𝑋 ⊸ 𝑋, 𝑋 ⊸ 𝑋, 𝑋 ⊸ 𝑋 ⊢ 𝑋 ⊸ 𝑋

!
!(𝑋 ⊸ 𝑋), !(𝑋 ⊸ 𝑋), !(𝑋 ⊸ 𝑋) ⊢ !(𝑋 ⊸ 𝑋)

ctr
!(𝑋 ⊸ 𝑋), !(𝑋 ⊸ 𝑋) ⊢ !(𝑋 ⊸ 𝑋)

∀
⊢ ∀𝑋, !(𝑋 ⊸ 𝑋)⊸ !(𝑋 ⊸ 𝑋)⊸ !(𝑋 ⊸ 𝑋) Figure 11.2.: Proof corresponding to

𝜆 𝑓0 .𝜆 𝑓1 .𝜆𝑥.( 𝑓0)( 𝑓0)( 𝑓1)𝑥.

𝑓0 ◦ 𝑓0 ◦ 𝑓1. This program can also be defined (in Krivine’s notation) as the
lambda-term 𝜆 𝑓0𝜆 𝑓1𝜆𝑥.( 𝑓0)( 𝑓0)( 𝑓1)𝑥. This lambda-term corresponds to a
proof of BList in Elementary Linear Logic which contains exactly four
axioms (Figure 11.2). These four axioms give rise to the representation
of the proof as a graphing in the Interaction Graph model. The latter
representation uses six subspaces, corresponding to the six occurrences
of 𝑋 in the formula BList. We will first introduce some notations for
these subspaces and then define formally the graphing representations
of binary words.

Notations 11.2.1. We write Σ↑↓ the set {0, 1,★} × {in, out}. We also denote
by Σ

↑↓
a,r the set Σ↑↓ ∪ {a, r}, where a (resp. r) stands for accept (resp.

reject).

Initial segments of the natural numbers {0, 1, . . . , 𝑛} are denoted [𝑛]. Up
to renaming, all statesets can be considered to be of this form. We also
denote ¤+ (resp. ¤−) the sum (resp. substraction) modulo 𝑛 + 1.

Notations 11.2.2. We fix once and for all an injection Ψ from the set Σ↑↓a,r
to intervals in R of the form [𝑘, 𝑘 + 1] with 𝑘 ∈ Z. For all 𝑣 ∈ Σ

↑↓
a,r, we

write ⟨𝑣⟩𝑍𝑌 the measurable subset Ψ(𝑣) × 𝑌 × 𝑍 of X, where 𝑌 ⊂ [0, 1]N
and 𝑍 ⊂ {★, 0, 1}N.

When 𝑌 = [0, 1]N (resp. 𝑍 = {★, 0, 1}N), we omit the subscript (resp.
superscript). The notation extends to subsets 𝑆 ⊂ Σ

↑↓
a,r by ⟨𝑆⟩ = ∪𝑣∈𝑆⟨𝑣⟩

(a disjoint union).

Definition 11.2.1 Given a word 𝔴 = 𝑎1𝑎2 . . . 𝑎𝑘 , we denote 𝑊 (2)𝔴 the graph
with set of vertices𝑉𝑊

(2)
𝔴 × 𝑆𝑊 (2)𝔴 = Σ↑↓ × [𝑘], set of edges 𝐸𝑊

(2)
𝔴 = {𝑟, 𝑙} × [𝑘],

and source and target maps 𝑠𝑊
(2)
𝔴 and 𝑡𝑊

(2)
𝔴 defined as follows:

𝑠𝑊
(2)
𝔴 = (𝑟, 𝑖) ↦→ (𝑎𝑖 , out, 𝑖)

(𝑙 , 𝑖) ↦→ (𝑎𝑖 , in, 𝑖)
𝑡𝑊
(2)
𝔴 = (𝑟, 𝑖) ↦→ (𝑎𝑖 ¤+1 , in, 𝑖 ¤+1)

(𝑙 , 𝑖) ↦→ (𝑎𝑖 ¤−1 , out, 𝑖 ¤−1)

Notations 11.2.3. We write 𝑠𝑊
(2)
𝔴

Σ↑↓
(resp. 𝑡𝑊

(2)
𝔴

Σ↑↓
) the projection of the source

(resp. target) map onto Σ↑↓, and 𝑠
𝑊
(2)
𝔴

[𝑘] (resp. 𝑡𝑊
(2)
𝔴

[𝑘] ) the projection of the
source (resp. target) map onto [𝑘].

The graph thus defined is the discrete representations of 𝔴, that one
can relate [38] to the representation shown in Figure 11.2. Now, a word [38]: Aubert et al. (2016), Characterizing

co-NL by a group actiongraphing is a geometric representation of a graph representation of a word:
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it can be defined as a graphing representative with the same graph
structure as a word representation.

Definition 11.2.2 Let 𝔴 be a word 𝔴 = 𝑎1𝑎2 . . . 𝑎𝑘 over the alphabet Σ. The
canonical graphing representation 𝑊̄ (2)𝔴 of 𝔴 is the graphing:

{(⟨𝑠𝑊
(2)
𝔴

Σ↑↓
(𝑒)⟩, 𝜙𝑒 , 1, 𝑠𝑊

(2)
𝔴

[𝑘] (𝑒) → 𝑡
𝑊
(2)
𝔴

[𝑘] (𝑒)) | 𝑒 ∈ 𝐸
𝑊̄
(2)
𝔴 },

where 𝜙𝑒 : ⟨𝑠𝑊
(2)
𝔴

Σ↑↓
⟩ → ⟨𝑡𝑊

(2)
𝔴

Σ↑↓
⟩ is a translation. A word graphing𝑊 of stateset

𝑆𝑊 is a graphing obtained from 𝑊̄
(2)
𝔴 by renaming the stateset w.r.t. an injection

𝑆𝑊 ↦→ [𝑘].
We write Rep(2)(𝔴) the set of word graphings for 𝔴.

Definition 11.2.3 Given a word 𝔴, a representation of 𝔴 is a graphing !𝐿
where 𝐿 belongs to Rep(2)(𝔴). The set of representations of words inΣ is denoted
W(2)

Σ
, the set of representations of a specific word 𝔴 is denoted Rep(·)(𝔴).

We define the conduct !Words(2)
Σ

= (W(2)Σ )‹‹.

A explained in the introduction, we will be interested in machines of
type !Words(2)

Σ
⊸ NBool, where NBool should be understood as a

non-deterministic version of Bool.

Definition 11.2.4 We define the (unproper) behaviour NBool as T⟨a,r⟩ , where
for all measurable sets 𝑉 the behaviour T𝑉 is defined as the set of all projects of
support 𝑉 .

Computations, Tests and Languages

Definition 11.2.5 An 𝔪-graphing 𝐺 is finite when it has a representative 𝐻
whose set of edges 𝐸𝐻 is finite.

Definition 11.2.6 For all monoid action 𝔪, we define Pred(𝔪) as the set of
𝔪-graphings in !Words(2)

Σ
⊸ NBool.

A predicat 𝔪-machine over the alphabet Σ is a finite 𝔪-graphing belonging to
Pred(𝔪).

The computation of a given machine on a given input is represented by
the execution, i.e. the computation of paths defined in section 9.2. The
result of the execution is an element of NBool, i.e. a sort of generalised
boolean value7. 7: For the specific case of ‘deterministic

machines’, the result in fact belongs to
the subtype Bool of booleans.Definition 11.2.7 (Computation) Let 𝑀 be a 𝔪-machine, 𝔴 a word over the

alphabet Σ and !𝐿 ∈ !Words(2)
Σ

. The computation of 𝑀 over !𝐿 is defined as
the graphing 𝑀 :: !𝐿 ∈ NBool.

The principle of the approach is to use the orthogonality (which defines
types) to capture the notion of acceptance. This is done using tests.

Definition 11.2.8 A test is a family of projects of support ⟨a,r⟩.
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We now define the language characterised by a machine. For this, one
could consider existential LT

∃ (𝑀) and universal LT
∀ (𝑀) languages for a

machine 𝑀 w.r.t. a test T :

LT
∃ (𝑀) = {𝔴 ∈ Σ∗ | ∀𝔱𝑖 ∈ T , ∃𝔴 ∈ Rep(·)(𝔴), 𝑀 ::𝔴 ‹ 𝔱𝑖}

LT
∀ (𝑀) = {𝔴 ∈ Σ∗ | ∀𝔱𝑖 ∈ T , ∀𝔴 ∈ Rep(·)(𝔴), 𝑀 ::𝔴 ‹ 𝔱𝑖}

The best situation is in fact when both definitions coincide, as it ensures
that only one representation of 𝔴 need to be considered to check whether
𝔴 belongs to the language or not. This situation is captured by the notion
of uniform test.

Definition 11.2.9 (Uniformity) Let 𝔪 be a monoid action. The test T is said
uniform w.r.t. 𝔪-machines if for all such machine 𝑀, and any two elements
𝔴,𝔴′ in Rep(·)(𝔴):

𝑀 ::𝔴 ∈ T ‹ if and only if 𝑀 ::𝔴′ ∈ T ‹

We write in this case LT (𝑀) = LT
∃ (𝑀) = LT

∀ (𝑀).

We now have introduced all the needed ingredients to state and prove
characterisations of complexity classes. We will first recall previously
known results [44]. [44]: Seiller (2018), Interaction Graphs: Non-

deterministic Automata
Notations 11.2.4. For𝑈 ⊂ X, we define Id𝑈 as the graphing with a single
edge and stateset [0]: {(⟨r⟩, 𝑥 ↦→ 𝑥, 1 · 1, 0→ 0)}.

Proposition 11.2.5 The test T−, defined as

{𝔱−𝜁 = (𝜁, Id⟨r⟩) | 𝜁 ≠ 0},

is uniform w.r.t. 𝔫∞-machines.

Note that since it is uniform w.r.t. 𝔫∞-machines, it is uniform w.r.t. 𝔪-
machines for any sub-monoid action 𝔪 – hence w.r.t. all monoid actions
considered in this paper. We will now define classes defined from non-
deterministic 𝔪-machines, i.e. finite graphing representatives of type
Pred(𝔪) in the model 𝕄[{0, 1},𝔪] (i.e. weights are either 0 or 1).

Definition 11.2.10 We define the complexity class

Predco(𝔪) = {LT−(𝑀) | 𝑀 𝔪-machine in 𝕄[{0, 1},𝔪]}.

The starting point of this work was the realisation that one can define
another test T+ capturing the notion of acceptance in NLogspace. Based
on this idea, and using technical lemmas from the previous paper, we
can characterise easily the hierarchy of complexity classes defined by
𝑘-head non-deterministic automata with the standard non-deterministic
acceptance condition (i.e. there is at least one accepting run). We state the
results and provide explanations, but we do not provide a formal proof.
Indeed, while an adaptation of the techniques used in previous work
[44] could be used, the result follows from the more general method [44]: Seiller (2018), Interaction Graphs: Non-

deterministic Automatapresented in the next sections.

Notations 11.2.6. For𝑈 ⊂ X, we define Id1/2
𝑈

as the graphing with a single
edge and stateset [0]: {(⟨r⟩, 𝑥 ↦→ 𝑥, 1

2 · 1, 0→ 0)}.
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Proposition 11.2.7 The test T+ defined as the family

{(0, Id1/2
𝐴𝑛
) | 𝐴𝑛 = ⟨a⟩[0, 1

𝑛 ]𝑛×[0,1]N , 𝑛 ∈ N}

is uniform w.r.t. 𝔫∞-machines.

Definition 11.2.11 We define the complexity class Predndet(𝔪) as the set

{LT+(𝑀) | 𝑀 𝔪-machine in 𝕄ndet[{0, 1}, 𝑚]}.

The considered test does indeed capture the usual condition for accep-
tance of non-deterministic machines. In fact, the sole element (0, Id1/2

⟨a⟩ )
is enough to obtain completeness, by a result from our earlier work
[44, Proposition 46]. We do not state it here, as it is generalised below.
From these results, a 𝑘-heads two-way automaton M accepts a word
𝔴 if and only if there exist at least one alternating path between the
graphing translation {M} of 𝑀 and the word representation !𝑊̄ (2)𝔴 whose
source and target is ⟨a⟩𝑌 for some subspace 𝑌. Thus, M accepts 𝔴 if
and only if there are alternating cycles between {M} :: !𝑊̄ (2)𝔴 and Id1/2

⟨a⟩ , i.e.

if and only if J{M} :: !𝑊̄ (2)𝔴 , Id1/2
⟨a⟩ K ≠ 0,∞, or equivalently if and only if

{M} :: !𝑊̄ (2)𝔴 ‹ Id1/2
⟨a⟩ .

However, the whole family of tests is required to obtain soundness. Indeed,
in the general case, it might be possible that a 𝔪𝑖-machine 𝐺 passes the
test {(0, Id1/2

⟨a⟩ )} by taking several (possibly different) paths through the

execution 𝐺 :: !𝑊̄ (2)𝔴 , creating a cycle of arbitrary length between 𝐺 :: !𝑊̄ (2)𝔴

and {(0, Id1/2
⟨a⟩ )}. In that case, it is not clear that the existence of such a cycle

can be decided with some automaton 𝑀. However, if 𝐺 :: !𝑊̄ (2)𝔴 passes
all tests in T+, it imposes the existence of a cycle of length 2 between
𝐺 :: !𝑊̄ (2)𝔴 and Id1/2

⟨a⟩ , something that can be decided by an automaton.
The existence of the length 2 cycle is enforced by the restriction of the
test to subspaces of the form [0, 1

𝑛 ]; we refer the the proof [45] for more [45]: Seiller (2023), Implicit complexity
through linear realisability: polynomial time
and probabilistic classes

details.

11.3. Statement of the results

Multihead automata with pushdown stacks

The proof of the characterisation theorem [44] relies on a representation [44]: Seiller (2018), Interaction Graphs: Non-
deterministic Automataof multihead automata as graphings. We here generalise the result to

probabilistic automata with a pushdown stack. For practical purposes,
we consider a variant of the classical notion of probabilistic two-way
multihead finite automata with a pushdown stack obtained by:

▶ fixing the right and left end-markers as both being equal to the
fixed symbol ★;

▶ fixing once and for all unique initial, accept and reject states;
▶ choosing that each transition step moves exactly one of the multiple

heads of the automaton;
▶ imposing that all heads are repositioned on the left end-marker

and the stack is emptied before accepting/rejecting.



11. Semantic complexity 202

▶ symbols from the stack are read by performing a pop instruction; if
the end-of-stack symbol ★ is popped, it is pushed on the stack in
the next transition.

It should be clear that these choices in design have no effect on the sets
of languages recognised.

Definition 11.3.1 A 𝑘-heads non-deterministic two-way multihead finite
automata with a pushdown stack (2Nfa+s(k)) M is defined as a tuple
(Σ, 𝑄,→), where the transition→ is a relation that associates to each element of
Σ𝑘★×𝑄 a subset of (Inst ×𝑄)where Inst is the set of instructions: ({1, . . . , 𝑘}×
{in, out}) × {Id , pop, push1 , push0 , push★}.
We say M is deterministic if→ is a function.

Definition 11.3.2 A 𝑘-heads probabilistic two-way multihead finite au-
tomata with a pushdown stack (2Pfa+s(k)) M is defined as a tuple (Σ, 𝑄,→),
where the transition function→ is a map that associates to each element of
Σ𝑘★ ×𝑄 a sub-probability distribution over the set (Inst ×𝑄).

Notations 11.3.1. The set of deterministic (resp. non-deterministic, resp.
probabilistic) two-way multihead automata with 𝑘 heads and without
pushdown stack (i.e. not using stack instructions) is written 2dfa(𝑘) (resp.
2nfa(𝑘), resp. 2pdfa(𝑘)) and the corresponding complexity class is noted
2Dfa(k) (resp. 2Pfa(k)). The set of all deterministic two-way multihead
automata ∪𝑘⩾12dfa(𝑘) is denoted by 2dfa. We define in a similar manner
the sets 2nfa and 2pfa. The corresponding complexity classes 2Dfa(∞),
2Nfa(∞), and 2Pfa(∞) are known to be equal to Logspace, NLogspace,
and PLogspace [161]. [161]: Holzer et al. (2011), Complexity of

multi-head finite automata: Origins and di-
rectionsNotations 11.3.2. The set of 𝑘 heads deterministic (resp. non-deterministic,

resp. probabilistic) two-way multihead automata with 𝑘 heads and a push-
down stack is written 2dfa + s(𝑘) (resp. 2nfa + s(𝑘) , resp. 2pdfa + s(𝑘))
and the corresponding complexity class is noted 2Dfa+s(k) (resp. 2Nfa+s(k),
resp. 2Pfa+s(k)). The set of all deterministic two-way multihead automata
with a pushdown stack ∪𝑘⩾12dfa + s(𝑘) is denoted by 2dfa + s. We de-
fine in a similar way the sets 2nfa + s and 2pfa + s. The corresponding
complexity classes 2Dfa+s(∞), 2Nfa+s(∞), and 2Pfa+s(∞) are known to
be equal to Ptime [162], Ptime, and PPtime respectively. [162]: Macarie (1997), Multihead Two-Way

Probabilistic Finite Automata

Remark 11.3.1 We note that non-deterministic two-way multihead au-
tomata with a pushdown stack characterise Ptime and not NPtime, as
shown by Cook [163] using memoization. [163]: Cook (1971), Characterizations of

Pushdown Machines in Terms of Time-
Bounded Computers

Results

Before stating the theorems, we need to define the complexity classes
considered in the realisability models. We already introduced two notions
of tests; we will require a last one adapted to probabilistic models of
computation.

Proposition 11.3.3 Let 𝜂 > 0. The test T 𝑝[𝜖] defined by

(log(1 − 1
2
.𝑢), Id1/2⟨a⟩𝑉(★

𝑛 )
[0, 1

𝑛 ]𝑛×[0,1]N
]) | 𝑢 ∈ [0, 𝜖], 𝑛 ∈ N}

is uniform w.r.t. 𝔫∞-machines.
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Definition 11.3.3 We define the complexity class Predprob(𝔪) as the set

{LT 𝑝 [ 1
2 ](𝑀) | 𝑀 𝔪-machine in 𝕄prob[[0, 1], 𝑚]}.

In the remaining sections, we will establish the following theorem.

Theorem 11.3.4 For all 𝑖 ∈ N∗ ∪ {∞},

Preddet(𝔪𝔦) = 2Dfa(i), Preddet(𝔫𝔦) = 2Dfa+s(i)
Predndet(𝔪𝔦) = 2Nfa(i), Predndet(𝔫𝔦) = 2Nfa+s(i)
Predco(𝔪𝔦) = co2Nfa(i), Predco(𝔫𝔦) = co2Nfa+s(i)
Predprob(𝔪𝔦) = 2Pfa(i), Predprob(𝔫𝔦) = 2Pfa+s(i)

Corollary 11.3.5 As special cases of the previous theorem,

Preddet(𝔪∞) = Logspace , Preddet(𝔫∞) = Ptime
Predndet(𝔪∞) = NLogspace , Predndet(𝔫∞) = Ptime
Predco(𝔪∞) = coNLogspace , Predco(𝔫∞) = Ptime
Predprob(𝔪∞) = PLogspace , Predprob(𝔫∞) = PPtime

The proofs are quite similar, even though we will need to state variants
of the key lemmas depending on the case considered: deterministic, non-
deterministic (with different notions of acceptance), and probabilistic.
However, the principle is the same and both directions rely on the fact that
computation is represented by paths (cf. section 9.2) and orthogonality
is based on a measurement of cycles (cf. section 9.3).

To prove completeness, we then show how any automata can be simulated
by a graphing. This requires the definition of the graphing translating the
automaton, and proving that the orthogonality translates the existence of
accepting runs in a quantitative manner (i.e. in the case of probabilistic
machines, the sum of weights of the accepting paths will be equal to the
probability of accepting).

The second part of the proof, soundness, is the most involved. It requires
to show that given any 𝔫∞-machine 𝑀, the computation of 𝑀 on the
graphing representation of a word 𝔴 boils down to the computation of
alternating paths between finite graphs (namely a graph mimicking 𝑀
and the graph representation of 𝔚).



Part III.

Two roads that lie ahead



Invariants for lower bounds 12.
This axis is a refined version of a longstanding research project, enriched
with time by new results. The main question it aims to tackle is the
following: Can invariants for dynamical systems be used to prove
separation results in computational complexity?

A number of results explained above provide strong grounds for believing
in this claim.

▶ The hierarchies of complexity classes shown in chapter 11 are
strict (this is shown in a series of five different papers), and one
proof technique is based on the incompressibility method based on
Kolmogorov complexity. Moreover ,there are known relationships
between Kolmogorov complexity and topological entropy.

▶ The result presented in Section 2.3 relies on the topological entropy
of the dynamical system representing the machine. Topological
entropy is an invariant for group/monoid actions which is finer
than another notion: orbit equivalence.

▶ The equivalences studied on abstract models of computations
(as part of my habilitation) highlights the relevance of purely
mathematical equivalences between group/monoid actions, and
in particular the notion of orbit equivalence.

▶ The characterisations of complexity classes in Section 2.2 are based
on linear realisability techniques, and thus involve in an essential
manner the orthogonality based on zeta functions (as explained in
Section 2.1). Zeta functions are defined from the set of finite orbits
in a dynamical system, which makes them an invariant w.r.t. orbit
equivalence.

Putting everything together. More precisely, I showed in Theorem 11.1.27
that the hyperfinite geometry of interaction interprets fragments of linear
logic of different expressivity depending on the type of maximal abelian
von Neumann subalgebra 𝔄 chosen. It should be clear that picking a
semi-regular masa inℜ0,1 is equivalent to choosing a Cartan subalgebra of
another von Neumann algebra 𝔑, namely 𝔑 = Nℜ0,1(𝐴). I.e. the theorem
states that the expressivity of the logic interpreted in linear realisability
models depends on the pair 𝔄 ⊂ 𝔑.

Based on the understanding of graphings in a chosen amc 𝛼 : 𝕄(𝐼)↷ X
as a generalisation of the group measure space construction of Murray
and von Neumann (chapter 9), this choice of a pair 𝔄 ⊂ 𝔑 corresponds
– in the case of measure-preserving group actions – to the inclusion
𝐿∞(X) ⊂ L(𝐿2(X,𝕄(𝐼))).
This leads to understanding Theorem 11.3.4 as an extension and re-
finement of Theorem 11.1.27, exploiting the more tractable setting of
graphings (as opposed to operators). This leads to the idea that invariants
for the pair 𝔄 ⊂ 𝔑, or equivalently1, could lead to separation results. Note 1: Note that a theorem by Singer [164]

shows that 𝛼 is orbit equivalent to 𝛽 if
and only if the induced pairs 𝔄 ⊂ 𝔑 and
𝔄′ ⊂ 𝔑′are isomorphic.

that one may also consider whether the corresponding Borel equivalence
relations (the preorder defined in Equation 4.1, which becomes a Borel
equivalence relation when 𝛼 is a measure-preserving group action) are
isomorphic in some sense.

The first step in that direction was presented in chapter 8. Indeed, we
show that invariants (namely topological entropy) of the graphings can be
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exploited to provide proofs of complexity lower bounds. While this result
does not exploit the invariants for the monoid action, I hope that the tech-
nique can be lifted to the realisability models, and provide lower bounds
techniques for the uniform classes characterised in Theorem 11.3.4.

Perspectives. A conjectured result would be that two abstract models of
computation that capture the same complexity class necessarily are orbit
equivalent, or have isomorphic induced pre-orders (Equation 4.1). Such
a result would allow the use of known invariants for orbit equivalence
or Borel equivalence relations (such as cost or ℓ 2-Betti numbers [84] [84]: Gaboriau (2002), Invariants ℓ2 de

relations d’équivalence et de groupesor cost[20]) to prove separation results. A possible (involved) proof
[20]: Gaboriau (2000), Coût des relations
d’équivalence et des groupes

mechanism for such a result would be to start from two non-orbit-
equivalent actions 𝛼 and 𝛽, and deduce from this the existence of a
𝛽-graphing that computes a language which cannot be computed by
an 𝛼-graphing. The techniques for proving this would be extremely
involved, and require a very good understanding of the zeta functions
involved, but not impossible to achieve.

However the general objective is both very ambitious and extremely hard.
In order to approach the question and make partial progress, I identify
three specific lines of research.

1. Providing more evidence that other standard separation and lower
bounds results from the literature can be expressed in terms of
invariants for dynamical systems. In particular, some lower bounds
based on Kolmogorov complexity [165, 166] could surely be shown [165]: Chrobak et al. (1986), k+1 heads are

better than k for PDA’s
[166]: Li et al. (2008), An introduction to
Kolmogorov complexity and its applications

to be specific applications of the invariant methods, exploiting the
connection between entropy and Kolmogorov complexity [167].

[167]: Galatolo et al. (2010), Effective sym-
bolic dynamics, random points, statistical
behavior, complexity and entropy

More generally, I will try to reformulate standard lower bound
techniques on boolean circuits. At this point, I have identified two
different methods (or rather groups of methods) for proving lower
bounds which we I believe can be related to the invariant method:
the Fusion Method, a term coined by A. Widgerson [168] to de- [168]: Wigderson (1993), The fusion method

for lower bounds in circuit complexityscribe both Sipser’s topological approach [169, 170] and Razborov’s
[169]: Sipser (1983), Borel Sets and Circuit
Complexity
[170]: Sipser (1984), A Topological View of
Some Problems in Complexity Theory

approximation method [171], and the polynomial method [172, 173].

[171]: Razborov (1989), On the Method of
Approximations
[172]: Beigel (1993), The Polynomial Method
in Circuit Complexity
[173]: Williams (2014), The Polynomial
Method in Circuit Complexity Applied to
Algorithm Design (Invited Talk)

2. Generalising our abstract invariant method to tackle more involved
parts of the Geometric complexity Theory (gct) program of Mulmu-
ley. Indeed, in Section 2.3 I explained how we obtained a strength-
ening of a result by Mulmuley [124]. This result is considered as

[124]: Mulmuley (1999), Lower Bounds in
a Parallel Model without Bit Operations

the first instance of the gct approach. Building on this connection,
we expect to reformulate and bring new dynamic insights within
the gct program.

3. Exploring another important and connecting direction in computa-
tional complexity, namely lower bounds proofs based on improving
algorithms, such as the result of Kabanets and Impagliazzo relating
feasible algorithms for polynomial identity testing (PIT) and lower
bound results [174], or Williams’s recent proof that NExptime (Non- [174]: Kabanets et al. (2003), Derandomiz-

ing Polynomial Identity Tests Means Proving
Circuit Lower Bounds

deterministic Exponential Time) does not have quasi-polynomial
size ACC circuits [175]. As argued by Williams during an invited

[175]: Williams (2014), Nonuniform ACC
Circuit Lower Boundstalk at the Computer Science Logic (CSL) 2015 conference, some

logical understanding of the mechanisms behind his proof would
provide important insights on the method. On top of these results,
recent work on (a weak version of) polynomial identity testing by A.
Wigderson et al. [176] exhibits connections between this approach [176]: Allen-Zhu et al. (2018), Operator

Scaling via Geodesically Convex Optimiza-
tion, Invariant Theory and Polynomial Iden-
tity Testing

and Mulmuley’s gct program and I hope that the dynamic point
of view exposed here will shed light on this connection, building
in particular on the previous item.



Architecture-oriented complexity 13.
This last axis is very new. I believe it to be of particular interest, which is
why I include it in this document.

Among the examples of models of computation that can be represented
by monoid actions, there are most (if not all) the abstract models encoun-
tered in the literature (Turing machines, lambda-calculus, BSS models,
PRAMs, etc.). However, I realised that more realistic models could also be
represented faithfully. In fact one can show that instruction set architectures
give rise to abstract models of computation. Those can be enriched with a
detailed cache structure from which can be defined a notion of cost model
(i.e. complexity measure) taking into account cache memory access times.
This lead me to the realisation that complexity as usually considered
(based on Turing machines) does not account for specific and important
aspects of real machines, among which at least:

▶ the significant gain in accessing cache memory involves a notion of
locality (using a given value in constrained parts of the code) that
should be accounted for in theoretical complexity results;

▶ the speculation mechanisms in current processors also impacts the
complexity of the considered algorithm.

I would therefore like to develop a machine-level complexity theory
that could aim at obtaining theoretical results on architecture-specific
complexity. While some results along those lines can be found in the
literature, they consist in a few examples of specific algorithms that run
faster than standard ones on specific architectures.

▶ A number of results on matrix multiplication algorithms have
been obtained, but these results are mainly experimental (e.g. [177] [177]: Goto et al. (2008), Anatomy of High-

Performance Matrix Multiplicationwhich may be one of the most theoretical). In particular, the specific
choices of parameters (e.g. the size of the blocks used in dividing
the matrices) giving optimal results in specific architectures are
not explained in terms of parameters of the latter (e.g. cache size,
number of registers, etc.).

▶ In some cases [178], speculation can be shown to make theoretically [178]: Auger et al. (2016), Good predictions
are worth a few comparisonsoptimal algorithms slower than more naive ones. Intuitively, this is

because the speculation in the optimal algorithm fails sufficiently to
cancel the theoretical gain in time complexity w.r.t. a theoretically
less efficient algorithm with a more ‘regular’ structure (i.e. for
which the speculation guesses right most of the time).

I expect to be able to obtain theoretical results based on chosen param-
eters of the architecture. These results could be of interest to provide
explanations for some behaviours found experimentally, provide proven
optimal algorithms for specific architectures, and maybe even lead to
guide architecture design choices.

Obviously, my position as non-expert of computer architecture led me
to question at first the feasibility and interest of developing such an
architecture-oriented complexity. I therefore started interacting with re-
searchers in computer architecture in order to understand if the approach
makes sense and could be of interest for more applied communities
(which is an essential motivation for investigating these questions further;
another theoretical framework that could not impact actual implemen-
tations would not motivate me). The feedback has been quite positive
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for the moment (parts of the contents of this section take their origin in
our discussions). A first proof of concept result is required to show the
soundness of the method. In the meantime, I have started to investigate
architecture-oriented complexity of simple problems (sorting, matrix
multiplication) in order to understand if it can lead to interesting results,
and started to investigate potential connection with techniques from
WCET (worst-case execution time) analyses [179]. [179]: Wilhelm et al. (2008), The Worst-

Case Execution-Time Problem—Overview of
Methods and Survey of ToolsThis objective of trying to understand machine-level complexity goes

hand-in-hand with the static analyses work described in Section 2.5. Our
aim has always been to analyse the code as far as possible down the
compilation pipeline. We currently have a candidate implementation of
the mwp-analysis (in fact a parametrised analysis defined as a functor)
on CompCert intermediate representation. My hope is to push these
analyses even further down to machine code, in order to have more
realistic results. From the point of view of compilers, another interesting
research research direction could arise from the confrontation of back-
end optimisations of compilers (i.e. from intermediate representation to
assembly code) with our theoretical architecture-based approach.



Part IV.

Appendix



von Neumann algebras 14.
First Definitions and Results

The theory of von Neumann algebras, under the name of ‘rings of
operators’, was first developed by Murray and von Neumann in a series
of seminal papers [180–187].

The double commutant theorem.

A normed ∗-algebra is a normed algebra endowed with an antilinear
isometric involution (·)∗ which reverses the product:

(𝑡∗)∗ = 𝑡 ∥𝑡∗∥ = ∥𝑡∥ (𝑡 + 𝑢)∗ = 𝑡∗ + 𝑢∗ (𝜆𝑡)∗ = 𝜆̄𝑡∗ (𝑡𝑢)∗ = 𝑢∗𝑡∗

A normed ∗-algebra is a C∗-algebra when it is complete (i.e. it is a Banach
algebra) and satisfies the C∗-identity ∥𝑡∗𝑡∥ = ∥𝑡∥2.

We denote by L(ℍ) the ∗-algebra of continuous (or equivalently, bounded)
linear maps from the Hilbert spaceℍ to itself. This algebra can be endowed
with the following three topologies:

▶ The norm topology, for which a net (𝑇𝜆) converges toward 0 when
the net ∥𝑇𝜆∥ converges to 0 in C;

▶ The strong operator topology (SOT) which is the topology of
pointwise convergence when ℍ is considered endowed with its
norm topology: a net (𝑇𝜆) converges toward 0 when for all 𝜁 ∈ ℍ,
the net (∥𝑇𝜆𝜁∥) converges towards 0 in C;

▶ The weak operator topology (WOT) which is the topology of
pointwise convergence when ℍ is considered endowed with its
weak topology: a net (𝑇𝜆) converges toward 0 when for all 𝜁, 𝜂 ∈ ℍ,
the net (⟨𝑇𝜆𝜁, 𝜂⟩) converges towards 0 in C;

Definition 14.0.1 (von Neumann algebra) A von Neumann algebra is a
∗-sub-algebra of L(ℍ) which is closed for the strong operator topology (SOT).

We now explain Murray and von Neumann’s fundamental ‘double
commutant theorem’. Pick 𝑀 ⊂ L(ℍ). We define the commutant of 𝑀
(in L(ℍ)) as the set 𝑀′L(ℍ) = {𝑥 ∈ L(ℍ) | ∀𝑚 ∈ 𝑀, 𝑚𝑥 = 𝑥𝑚}. We will
in general omit to precise the ambient algebra and denote abusively 𝑀′
the commutant of 𝑀 if the context is sufficiently clear. We will denote by
𝑀′′ the bi-commutant (𝑀′)′ of 𝑀.

The following theorem is the keystone of the von Neumann algebras
theory. It is particularly elegant, since it shows an equivalence between a
purely algebraic notion – being equal to its bi-commutant – and a purely
topological notion – being closed for the strong operator topology. This
theorem is due to von Neumann [180].

Theorem 14.0.1 (Double Commutant Theorem) Let 𝑀 be a ∗-sub-algebra of
L(ℍ) such that 1L(ℍ) ∈ 𝑀. Then 𝑀 is a von Neumann algebra if and only if
𝑀 = 𝑀′′.
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Remark 14.0.1 Since the strong operator topology (SOT) is weaker than
the norm topology, a von Neumann algebra 𝔐 is also closed for the norm
topology, and is also a C∗-algebra. Moreover, since 𝔐, as a von Neumann
algebra, is the commutant of a set of operators, it necessarily contains the
identity operator in L(ℍ), and consequently is a unital C∗-algebra. One
can therefore define the continuous spectral calculus for operators in 𝔐.

Direct Integrals.

Let 𝔐 be a von Neumann algebra. We define the center of 𝔐 as the von
Neumann algebra ℨ(𝔐) = 𝔐 ∩𝔐

′.

Definition 14.0.2 (Factor) A factor is a von Neumann algebra 𝔐 whose center
is trivial, i.e. such that ℨ(𝔐) = C.1L(ℍ).

The study of von Neumann algebras can be reduced to the study of
factors. This is one of the most important results of the theory, which is
due to von Neumann [187]: he showed that every von Neumann algebra
can be written as a direct integral of factors. A direct integral is a direct
sum over a continuous index set, in the same way an integral is a sum
over a continuous index set. A complete exposition of this result can be
found in the first book of the Takesaki series [188], Section IV.8, page
264.

Here are the main ideas. If 𝔄 is not a factor, its center ℨ(𝔄) is a non-trivial
commutative von Neumann algebra (i.e. different from C). Suppose now
that ℨ(𝔄) is a diagonal algebra, i.e. that there exists a countable set 𝐼
(which could be finite) and a family (𝑝𝑖)𝑖∈𝐼 of pairwise disjoint minimal
projections such that

∑
𝑖∈𝐼 𝑝𝑖 = 1. Then the algebras 𝑝𝑖𝔄𝑝𝑖 are factors,

and one has 𝔄 =
⊕

𝑖∈𝐼 𝑝𝑖𝔄𝑝𝑖 . However, in the general case, the center
ℨ(𝔄) does not need to be a diagonal algebra, and it can contain a diffuse
sub-algebra, i.e. a sub-algebra that does not have minimal projections.
Then it is necessary to consider a continuous version of the direct sum:
the direct integral.

Definition 14.0.3 Let (𝑋,B, 𝜇) be a measured space. A family (ℍ𝑥)𝑥∈𝑋 of
Hilbert spaces is measurable over (𝑋,B, 𝜇) when there exists a countable
partition (𝑋𝑖)𝑖∈𝐼 of 𝑋 such that for all 𝑖 ∈ 𝐼:

∃𝕂 , ∀𝑥 ∈ 𝑋𝑖 ,ℍ𝑥 = 𝕂

where 𝕂 is either equal to C𝑛 (𝑛 ∈ N) or equal to ℓ 2(N).
A section (𝜉𝑥)𝑥∈𝑋 (𝜉𝑥 ∈ ℍ𝑥) is measurable when its restriction to each element
𝑋𝑛 of the partition is measurable.

Definition 14.0.4 Let (ℍ𝑥)𝑥∈𝑋 be a measurable family of Hilbert spaces over
a measured space (𝑋,B,𝜆). The direct integral

∫ ⊕
𝑋

ℍ𝑥𝑑𝜆(𝑥) is the Hilbert
space whose elements are equivalence classes of measurable sections modulo
almost everywhere equality, and the scalar product is defined by:

⟨(𝜉𝑥)𝑥∈𝑋 , (𝜁𝑥)𝑥∈𝑋⟩ =
∫ ⊕

𝑋

⟨𝜉𝑥 , 𝜁𝑥⟩𝑑𝜆(𝑥)

In the same way commutative C∗-algebras are exactly the algebras of
continuous functions from locally compact Hausdorff spaces to C (this is
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Gelfand’s theorem, [189]), one can show that every commutative von Neu-
mann algebra can be identified with the algebra 𝐿∞(𝑋,B,𝜆) of essentially
bounded measurable functions on a measured space (𝑋,B,𝜆).

Theorem 14.0.2 Let 𝔄 be a commutative von Neumann algebra. There exists a
measurable family of Hilbert spaces (ℍ𝑥)𝑥∈𝑋 over a measured space (𝑋,B,𝜆)
such that 𝔄 is unitarily equivalent to the algebra 𝐿∞(𝑋) acting on the Hilbert
space

∫ ⊕
𝑋

ℍ𝑥𝑑𝜆(𝑥).

We will not define here neither the notion of measurable family of von
Neumann algebras, nor the one of direct integrals of von Neumann
algebras. We only state the fundamental theorem mentioned above. The
result is due to von Neumann [187] and appears in Takesaki’s second
book [190] (Theorem IV.8.21 page 275).

Theorem 14.0.3 Every von Neumann algebra can be written as a direct integral
of factors.

Classification of factors.

The study of factors led to a classification based on the study of the set of
projections and their isomorphisms (partial isometries). We recall that
a projection is an operator 𝑝 such that 𝑝 = 𝑝∗ = 𝑝2 (this is sometimes
referred to as an ‘orthogonal projection’). If 𝔐 is a von Neumann algebra,
we will denote by Π(𝔐) the set of projections in 𝔐. Since 𝔐 is a sub-
algebra of L(ℍ) for a given Hilbert space ℍ, the projections in Π(𝔐) are
in particular projections in L(ℍ). As such, they are in correspondence
with subspaces of ℍ: the projection 𝑝 corresponds to the closed subspace
𝑝ℍ. Two projections 𝑝, 𝑞 are disjoint when 𝑝𝑞 = 0, translating the fact
that the two corresponding closed subspaces 𝑝ℍ and 𝑞ℍ are disjoint.
Moreover, the set Π(𝔐) is endowed with a partial ordering inherited
from the inclusion of subspaces: 𝑝 ⪯ 𝑞 if and only if 𝑝𝑞 = 𝑝 if and only if
𝑝ℍ ⊂ 𝑞ℍ.

Now, the idea of Murray and von Neumann [181] was to consider an
equivalence relation on the set of projections. This equivalence relation
depends on the algebra 𝔐 and translates the fact that 𝔐 contains an
isomorphism between the corresponding subspaces. Namely, they define
the equivalence as follows: two projections 𝑝, 𝑞 are Murray von Neumann
equivalent in 𝔐, noted 𝑝 ∼𝔐 𝑞, when there exists an element 𝑢 ∈ 𝔐 such
that 𝑢𝑢∗ = 𝑝 and 𝑢∗𝑢 = 𝑞. Notice that this implies that 𝑢 is a partial
isometry.

The partial ordering ⪯ then induces a partial ordering ­𝔐 on the equiva-
lence classes of projections in 𝔐, i.e. on the set Π(𝔐)/∼𝔐.

Remark 14.0.2 As we explained above, 𝑝 ⪯ 𝑞 means that 𝑝ℍ is a closed
subspace of 𝑞ℍ. The fact that 𝑝 ∼𝔐 𝑞 translates the fact that 𝑝ℍ and 𝑞ℍ
are inner (w.r.t 𝔐) isomorphic, i.e. there exists an isomorphism between
them which is an element of 𝔐, or in other terms, the fact that they are
isomorphic is witnessed by an element of 𝔐. Consequently, the fact that
𝑝 ­𝔐 𝑞 translates the idea that 𝑝ℍ is inner isomorphic to a closed subspace
of 𝑞ℍ, and therefore that 𝑝ℍ is somehow smaller than 𝑞ℍ in the sense
that an element of 𝔐 witnesses the fact that it is smaller.

Definition 14.0.5 A projection 𝑝 in a von Neumann algebra 𝔐 is infinite (in
𝔐) when there exists 𝑞 ≺ 𝑝 (i.e. a proper sub-projection) such that 𝑞 ∼𝔐 𝑝. A
projection is finite (in 𝔐) when it is not infinite (in 𝔐).
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The following result combines Proposition V.1.3 page 291 and Theorem
V.1.8 page 293 in Takesaki’s book [188].

Proposition 14.0.4 Let 𝔐 be a von Neumann algebra. Then 𝔐 is a factor if
and only if the relation ­𝔐 is a total ordering.

To state the following definition and theorem, we will use a slight variant
of the usual notion of order type: we distinguish the element denoted
by∞ from any other element, considering that∞ represents a class of
infinite projections. For instance, {0, 1} and {0,∞} should be considered
as distinct since the first does not contain infinite elements contrarily to
the second.

Definition 14.0.6 (Type of a Factor) Let 𝔐 be a factor. We will say that:

▶ 𝔐 is of type I𝑛 when ­𝔐 has the same order type as {0, 1, . . . , 𝑛};
▶ 𝔐 is of type I∞ when ­𝔐 has the same order type as N ∪ {∞};
▶ 𝔐 is of type II1 when ­𝔐 has the same order type as [0, 1];
▶ 𝔐 is of type II∞ when ­𝔐 has the same order type as R⩾0 ∪ {∞};
▶ 𝔐 is of type III when ­𝔐 has the same order type as {0,∞}, i.e.

all non-zero projections are infinite.

Proposition 14.0.5 There exists factors of all types. Moreover, ­𝔐 cannot be of
another order type as the ones listed above.

Proof. Existence of type I factors is clear; the algebra L(ℍ) with ℍ a
Hilbert space of dimension 𝑘 (𝑘 ∈ N∗ ∪ {∞}) is a type I𝑘 factor. For the
existence of type II and type III factors, we refer to the first volume of
Takesaki’s series [188], section V.7, page 362. For the second part of the
proposition, we refer once again to the first volume of Takesaki’s series
[188], Theorem V.1.19 and Corollary V.1.20 pages 296-297. R

We can show that a factor of type I𝑛 is isomorphic to 𝔐𝑛(C), the algebra
of square matrices of size 𝑛 × 𝑛 with complex coefficients. A factor of
type I∞ is isomorphic to L(ℍ), where ℍ is an infinite-dimensional Hilbert
space.

We will now define the notion of trace. One of the important properties
of type II1 factors is the existence of a faithful normal finite trace, i.e. an
adequate generalisation of the trace of matrices. Traces, in general, are
not defined for all elements, but only for positive elements.

Definition 14.0.7 Let 𝑎 be an operator in 𝔐 a von Neumann algebra (more
generally, a C∗-algebra). We say that 𝑎 is positive if Spec𝔐(𝑎) ⊂ ℝ+. We denote
by 𝔐+ the set of positive operators in 𝑀.

Proposition 14.0.6 We have 𝔐+ = {𝑢∗𝑢 | 𝑢 ∈ 𝔐}.

Definition 14.0.8 A trace 𝜏 on a von Neumann algebra 𝔐 is a function from
𝔐+ into [0,∞] satisfying:

1. 𝜏(𝑥 + 𝑦) = 𝜏(𝑥) + 𝜏(𝑦) for all 𝑥, 𝑦 ∈ 𝔐+;
2. 𝜏(𝜆𝑥) = 𝜆𝜏(𝑥) for all 𝑥 ∈ 𝔐+ and all 𝜆 ⩾ 0;
3. 𝜏(𝑥∗𝑥) = 𝜏(𝑥𝑥∗) for all 𝑥 ∈ 𝔐.

We will moreover say that 𝜏 is:

▶ faithful if 𝜏(𝑥) > 0 for all 𝑥 ≠ 0 in 𝔐+;
▶ finite when 𝜏(1) < ∞;
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▶ semi-finite when for all element 𝑥 in 𝔐+ there exists 𝑦 ∈ 𝔐+ such that
𝑥 − 𝑦 ∈ 𝔐+ and 𝜏(𝑦) < ∞;

▶ normal when 𝜏(sup{𝑥𝑖}) = sup{𝜏(𝑥𝑖)} for all increasing bounded net
{𝑥𝑖} in 𝔐+.

The following theorem can be found in Takesaki’s book [188] as Theorem
V.2.6 page 312.

Theorem 14.0.7 If 𝔐 is a finite factor (i.e. the identity is a finite projection),
then there exists a faithful normal finite trace 𝜏. Moreover, every other faithful
normal finite trace 𝜌 is proportional to 𝜏.

If 𝔐 is of type II1, we will refer to the unique faithful normal finite trace tr such
that tr(1) = 1 as the normalised trace.

Remark 14.0.3 Since the set of positive operators in 𝔐 generates the von
Neumann algebra 𝔐, a finite trace 𝜏 extends uniquely to a positive linear
form on 𝔐 that we will abusively write 𝜏 as well. In particular, every
operator 𝑎 in a type II1 factor has a finite trace.

In order to define the notion of hyperfiniteness we need to define yet
another topology on L(ℍ), the so-called 𝜎-weak topology. This definition
is based upon the notion of weak∗ topology: if 𝑋 is a space and 𝑋∗ is
its dual, then the weak∗ topology on 𝑋∗ is defined as the topology of
pointwise convergence on 𝑋. To define the 𝜎-weak topology on L(ℍ) as
a weak∗ topology, we moreover need to see L(ℍ) as the dual space of
some other space. This is a well-known result which can be found in
standard textbooks: the algebra L(ℍ) is the dual of the space of trace-class
operators that we will denote L(ℍ)∗ and which is itself the dual space of
the algebra of compact operators.

Definition 14.0.9 Let ℍ be a Hilbert space. The 𝜎-weak topology on L(ℍ) is
defined as the weak∗ topology induced by the predual L(ℍ)∗ of L(ℍ).

Remark 14.0.4 If ℍ is an infinite-dimensional separable Hilbert space,
L(ℍ) embeds into L(ℍ ⊗ ℍ) through the morphism 𝑥 ↦→ 𝑥 ⊗ 1. One
can show that the restriction of the weak operator topology (WOT) on
L(ℍ ⊗ ℍ) coincides with the 𝜎-weak topology on L(ℍ).

Definition 14.0.10 A von Neumann algebra 𝔐 is hyperfinite if there exists a
directed family 𝔐𝑖 of finite-dimensional ∗-sub-algebras of 𝔐 such that ∪𝑖𝔐𝑖 is
dense in 𝔐 for the 𝜎-weak topology.

The following theorems can be found in Takesaki’s third volume [191], as
Theorem XIV.2.4 page 97 and Theorem XVI.1.22 page 236 respectively.

Theorem 14.0.8 Two hyperfinite type II1 factors are isomorphic. We will write
ℜ the unique hyperfinite type II1 factor.

Theorem 14.0.9 Two hyperfinite type II∞ factors are isomorphic. In particular,
they are isomorphic to the tensor product ℜ0,1 = L(ℍ) ⊗ ℜ.

Sakai’s Theorem and W∗-algebras.

We have defined above the von Neumann algebras as sub-algebras of
L(ℍ)where ℍ is a separable Hilbert space. We therefore defined a von
Neumann algebra as a ‘concrete’ algebra, i.e. as a set of operators acting
on a given space. As it is the case with C∗-algebras, which can be defined
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either concretely as a norm-closed sub-algebra of L(ℍ) or abstractly as
an involutive Banach algebra satisfying the C∗-identity, there exists an
abstract definition of von Neumann algebras. This important result is
due to Sakai.

Definition 14.0.11 Let 𝔐 be a von Neumann algebra. The pre-dual 𝔐∗ of
𝔐 is the set of linear forms‗ which are continuous for the 𝜎-weak topology
(Definition 14.0.9).

The following theorem can be found in Takesaki’s first volume [188]
(Theorem II.2.6, page 70)

Proposition 14.0.10 Let𝔐 be a von Neumann algebra. There exists an isometric
isomorphism between 𝔐 and (𝔐∗)∗ – the dual (as a Banach space) of the pre-dual
of 𝔐.

The reciprocal statement was proved by Sakai [192] and gives an exact
characterisation of von Neumann algebras among C∗-algebras. A proof
can be found in Takesaki [188], Theorem 3.5, page 133, and Corollary 3.9,
page 135.

Theorem 14.0.11 A C∗-algebra 𝔄 is a von Neumann algebra if and only if there
exists a Banach algebra 𝐵 such that 𝔄 is the dual of 𝐵: 𝔄 = 𝐵∗. The algebra 𝐵 is
moreover unique (up to isomorphism).

One can then define von Neumann algebras abstractly, i.e. as an abstract
algebra vs as an algebra of operators acting on a specific space. Such
abstract algebras can then be represented as algebras of operators.

Definition 14.0.12 A representation of a von Neumann algebra 𝔐 is a
pair (ℍ,𝜋) where 𝜋 : 𝔐 → L(ℍ) is a C∗-algebra homomorphism. If the
homomorphism 𝜋 is injective, we say the associated representation is faithful.

The Standard Representation.

One of the major results in the theory of von Neumann algebras is that
every such algebra has a ‘standard representation’, i.e. a representation
that satisfies a number of important properties. Namely, once realised
that von Neumann algebras can be defined in an abstract way, the next
step is to identify them with particularly satisfying concrete algebras. A
proof of the following result can be found in Takesaki [190], Section IX.1,
page 142. The theorem is due to Haagerup [193].

Theorem 14.0.12 Let 𝔐 be a von Neumann algebra. Then there exists a Hilbert
space ℍ, a von Neumann algebra 𝔖 ⊂ L(ℍ), an isometric antilinear involution
𝐽 : ℍ→ ℍ and a cone 𝔓 closed under (·)∗ such that:

▶ 𝔐 and 𝔖 are isomorphic;
▶ 𝐽𝔐𝐽 = 𝔐′;
▶ 𝐽𝑎𝐽 = 𝑎∗ for all 𝑎 ∈ ℨ(𝔐);
▶ 𝐽𝑎 = 𝑎 for all 𝑎 ∈ 𝔓;
▶ 𝑎𝐽𝑎𝐽𝔓 = 𝔓 for all 𝑎 ∈ 𝔐.

The tuple (𝔖,ℍ, 𝐽 ,𝔓) is called the standard form of the algebra 𝔐.

‗ We recall that a linear form on a vector space𝑉 is a linear map from𝑉 into C, i.e. an element
of the dual of 𝑉 . When 𝑉 is a topological vector space, the elements of the topological
dual of 𝑉 are therefore the continuous linear forms.
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Let us work out the case of a von Neumann algebra 𝔐 endowed with
a faithful normal semi-finite trace. In this case, we can describe a quite
easy construction of the standard form of 𝔐. We first define the ideal
𝔫𝜏 = {𝑥 ∈ 𝔐 | 𝜏(𝑥∗𝑥) < ∞} (notice that in the case of a finite algebra
𝔫𝜏 = 𝔐). We then consider the map (·, ·) from 𝔐 to real numbers defined
by:

(𝑥, 𝑦) = 𝜏(𝑦∗𝑥)
From the linearity of the trace and the anti-linearity of the involution,
we can show that it is a sesquilinear form. Moreover, since 𝑥∗𝑥 is a
positive operator, we know that 𝜏(𝑥∗𝑥) ⩾ 0. Therefore, this defines a
scalar product on 𝔫𝜏, and we can now define the Hilbert space 𝐿2(𝔐, 𝜏) as
the completion of 𝔫𝜏 (𝔐 when the algebra is finite) for the norm defined
by ∥𝑥∥2 = 𝜏(𝑥∗𝑥) 1

2 .

One can then show that for every element 𝑎 ∈ 𝔐 and every 𝑥 ∈ 𝔫𝜏:,

∥𝑎𝑥∥2 ⩽ ∥𝑎∥ ∥𝑥∥2

∥𝑥𝑎∥2 ⩽ ∥𝑎∥ ∥𝑥∥2

We then denote by 𝜋𝜏 (resp. 𝜋′𝜏) the representation of 𝔐 onto 𝐿2(𝔐, 𝜏)
by left (resp. right) multiplication.

We then notice that the operation (·)∗ defines an isometry on 𝔫𝜏 for the
norm ∥·∥2. It thus extends to an antilinear involution 𝐽 : 𝐿2(𝔐, 𝜏) →
𝐿2(𝔐, 𝜏). One then shows that:

▶ 𝜋𝜏 (resp. 𝜋′𝜏) is a faithful representation (resp. antirepresentation†);
▶ 𝜋𝜏(𝔐)′ = 𝜋′𝜏(𝔐) and 𝜋′𝜏(𝔐)′ = 𝜋𝜏(𝔐);
▶ 𝐽𝜋𝜏(𝑎)𝐽 = 𝜋′𝜏(𝑎∗) for all 𝑎 ∈ 𝔐.

† An antirepresentation is a representation that inverses multiplication: 𝜋′𝜏(𝑥𝑦) =

𝜋′𝜏(𝑦)𝜋′𝜏(𝑥).
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